• Title/Summary/Keyword: Control mechanism

Search Result 5,624, Processing Time 0.037 seconds

AR Marker Detection Technique-Based Autonomous Attitude Control for a non-GPS Aided Quadcopter

  • Yeonwoo LEE;Sun-Kyoung KANG
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.3
    • /
    • pp.9-15
    • /
    • 2024
  • This paper addresses the critical need for quadcopters in GPS-denied indoor environments by proposing a novel attitude control mechanism that enables autonomous navigation without external guidance. Utilizing AR marker detection integrated with a dual PID controller algorithm, this system ensures accurate maneuvering and positioning of the quadcopter by compensating for the absence of GPS, a common limitation in indoor settings. This capability is paramount in environments where traditional navigation aids are ineffective, necessitating the use of quadcopters equipped with advanced sensors and control systems. The actual position and location of the quadcopter is achieved by AR marker detection technique with the image processing system. Moreover, in order to enhance the reliability of the attitude PID control, the dual closed loop control feedback PID control with dual update periods is suggested. With AR marker detection technique and autonomous attitude control, the proposed quadcopter system decreases the need of additional sensor and manual manipulation. The experimental results are demonstrated that the quadrotor's autonomous attitude control and operation with the dual closed loop control feedback PID controller with hierarchical (inner-loop and outer-loop) command update period is successfully performed under the non-GPS aided indoor environment and it enhanced the reliability of the attitude and the position PID controllers within 17 seconds. Therefore, it is concluded that the proposed attitude control mechanism is very suitable to GPS-denied indoor environments, which enables a quadcopter to autonomously navigate and hover without external guidance or control.

Cell Priority Control with 2-Level Thresholds in ATM Switch Network (ATM 스위치 네트워크에서의 2-레벨 임계치를 갖는 셀우선순위 제어방식)

  • 박원기;한치문;최형진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.3
    • /
    • pp.479-491
    • /
    • 1994
  • In this paper, we proposed cell priority control with 2-level thresholds, which was considered cell loss and cell delay requirement, in ATM switch with output buffer. Priority control mechanism presented in this paper improved cell loss rate for cell loss censitive cell and cell delay for delay censitive cell. In this mechanism cell loss rate and mean cell delay of cell priority control mechanism were obtained theoretically. The results show that cell loss rate and mean cell delay improvement become better by adjusting two thresholds according to QOS characteristics.

  • PDF

Development of Hardware-linked Simulation Platform for Automation Mechanism Training (자동화 메커니즘 교육을 위한 하드웨어 연동형 시뮬레이션 플랫폼 개발)

  • Kim, Hyun-Hee;Park, Sung-Su;Lee, Kyung-Chang;Hwang, Yeong-Yeun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.34-42
    • /
    • 2015
  • As the industry environment is changing to automated systems, engineering education at university has changed with industrial development. Industry technology will be developed, and the industry environment will become more complicated. Therefore, the knowledge that undergraduates have to acquire in university will be extensive. Industries need a person with expertise to react quickly to rapidly changing technology. Therefore, universities need to endeavor to cultivate manpower in technical fields. This is difficult because the contents of engineering education must react quickly to rapidly changing industry technology. This paper proposes a hardware-linked simulation platform for engineering education on the well-used systems in industrial sites.

Interjoint and Intersegmental Coordination Pattern of Dwichagi in Taekwondo (태권도 뒤차기의 인체 관절과 분절사이의 협응 형태)

  • Lee, Ok-Jin;Choi, Ji-Young;Kim, Seung-Jae
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.4
    • /
    • pp.73-82
    • /
    • 2007
  • The purpose of this study was to qualitatively analyze coordination pattern of joints and segments during Dwichagi in Taekwondo and present a point of difference as compared with the previous study on Dolryeochagi in Taekwondo. By the utilization of three-dimensional cinematography, the angles of individual joints and segments of six male Taekwondo experts during Dwichagi were calculated by using Euler's angle. The used coordination variables were angle vs. angle plots between adjacent joints and segments and angle vs. angular velocity plots of individual joints and segments, respectively. It was observed during Dwichagi that in-phase coordination and spring-like rotational control mechanism of the lower and upper trunk were transferred into straight spring-like control mechanism of lower leg passing through flexion-extension and the fixation of degree-of-freedom of lower trunk and hip joint alternatively. This comparative study that coordination variables were used seems to be more useful research direction to deeply understand basic control mechanisms of Taekwondo kicking techniques when compared with the previous studies that defined Dwichagi as a thrust movement pattern merely based on biomechanical variables of a kicking leg.

Dual Stage Servo Controller for Image Tracking System (듀얼 스테이지 서보 시스템을 이용한 영상 추적장치의 안정화 제어)

  • Choi Y.J.;Kang M.S.;Ryu K.H.;Lee S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.45-46
    • /
    • 2006
  • In this paper, a dual stage servo mechanism has been developed for image tracking system to improve transient control performances such as small rise time, small overshoot, small settling time, etc. A secondary stage, a platform, actuated by a pair of electro-magnets is mounted on a conventional elevation gimbal. In this mechanism, the gimbal provides large range but slow motion and the platform provides small range but fast positioning. A sliding mode control is applied to the platform positioning to attain robust performances and stability in the presence of the disturbance related to dynamic coupling of the gimbal and the platform. Results from experiments illustrate that the suggested dual stage mechanism controlled by the sliding mode control is effective in improving transient responses and attenuating the disturbance related with dynamic coupling.

  • PDF

Physicians' Requirement Analysis Based Design of the Master Device Mechanism for Teleoperated Interventional Robotic System (원격 중재시술용 마스터장치에 대한 의료진 요구분석 및 이를 반영한 메커니즘 설계)

  • Woo, Hyun Soo;Cho, Jang Ho;Lee, Hyuk Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.8
    • /
    • pp.603-609
    • /
    • 2016
  • This paper presents an optimally designed master device mechanism for teleoperated interventional robotic system. The interventional procedures using the teleoperated robotic system and the physicians' requirements are summarized. The master device should implement 5-DOF motion including 2-DOF translational motion for the entry position control, 2-DOF rotational motion for the orientation control, and 1- DOF translational motion for needle insertion. The handle assembly includes a 1-DOF translational mechanism for needle insertion and buttons for operation mode selection. The mechanisms for the 2-DOF translational motion and the 2-DOF rotational motion are designed using motors and brakes based on the various mechanisms to satisfy all the above requirements, respectively. Absolute position sensors are adopted to implement automatic initial positioning and orientation matching at the first step of needle insertion.

DEVELOPMENT OF THE INDEPENDENT-TYPE STEER-BY-WIRE SYSTEM USING HILS

  • Jo, H.Y.;Lee, U.K.;Kam, M.S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.321-327
    • /
    • 2006
  • The previous paper described the logic tuning, the vehicle manufacture and the evaluation in the HILS system for the purpose of the development of a Steer-By-Wire(SBW) system. This paper describes the content of applying to a new HILS system, the vehicle manufacture and the result of the evaluation performed in Independent-type SBW(I-SBW) system. Here, the SBW indicates the method of steering both tires by using one motor as the steering gear actuator, similar to the conventional steering system. On the other hand, the I-SBW means the method of steering both front tires independently by using dual motors as the steering gear actuator. As a result, the layout and the kinematical mechanism of the I-SBW system are quite different from those of the typical steering mechanism. Nevertheless, there is no change in the steering column motor system. In the report, we first describe the structure and control logic of the I-SBW system, and then the control effect on this system as applied for both the HILS system and a vehicle. Furthermore, our HILS system involves the actuator mechanism which realizes the reaction force of the road surface with a minimized frictional force in operation. Therefore, it is possible for us to tune the control logic via the HILS system and confirm the effect of the tuned control logic by applying it to a vehicle with the I-SBW system.

Media Access Scheme for Achieving an Effective Traffic Control Mechanism and Energy Efficiency in Sensor Networks (센서 네트워크에서 효과적인 트래픽 제어 방법과 에너지 효율성을 고려한 Media Access 기법)

  • Min Byung-Ung;Kim Dong-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.6
    • /
    • pp.1060-1064
    • /
    • 2006
  • Data collected by sensors in field are transmitted to the base station gathering all of data. Because sensors have to gather data in surroundings and periodically transmit data to the base station, it makes energy consumed much. In this paper, we mose the scheme that is to avoid traffic congestion with achievement of energy efficiency, so collected data is transmitted efficiently. This is to adjust transmission rate differently in case of increasing or decreasing traffic and minimize the energy consumption with setting ideal options up basic CSMA(Carrier Sense Multiple Access) protocol in each sensor. Through the simulation, we find the ideal CSMA options and apply the proposed scheme of traffic control mechanism to them and analyze them, then show energy efficiency and effective traffic control mechanism.

Design and application of a novel eddy current damper for a high-rise sightseeing tower

  • Kaifang Liu;Yanhui Liu;Chia-Ming Chang;Ping Tan
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.573-587
    • /
    • 2023
  • A conventional tuned mass damper (TMD) provides a passive control option to suppress the structures' wind- or earthquake-induced vibrations. However, excessive displacements of the TMD raise concerns in the practical implementation. Therefore, this study proposes a novel TMD designed for and deployed on a high-rise sightseeing tower. The device consists of an integrated two-way slide rail mount and an eddy current damper (ECD) with a stroke control mechanism. This stroke control mechanism allows the damping coefficient to automatically increase when the stroke reaches a predetermined value, preventing excessive damper displacements during large earthquakes. The corresponding two-stage damping parameters are designed with a variable-thickness copper plate to enable the TMD stroke within a specified range. Thus, this study discusses the detailed design schemes of the device components in TMD. The designed two-stage damping parameters are also numerically verified, and the structural responses with/without the TMD are compared. As seen in the results, the proposed TMD yields effective control authority to limit the acceleration response within a comfort level. In addition, this TMD resolves the spatial availability for the damper movement in high-rise buildings by the controllable damping mechanism.

The Modeling and Traffic Feedback Control for QoS Management on Local Network (지역 네트워크에서 QoS 관리를 위한 모델링 및 트래픽 피드백 제어)

  • Park Jong-jin;Huh Eui-Nam;Mun Young-song
    • Journal of Internet Computing and Services
    • /
    • v.4 no.2
    • /
    • pp.39-45
    • /
    • 2003
  • Throughput response characteristics depending on the network bandwidth allocation is needed to be modeled to devise adaptive control mechanism to support QoS of the local network. In this study, we propose a dynamic system model that reveals the response characteristics of network. The adaptive traffic feedback control is applied to this model. And we simulate this system for optimization of adaptive control mechanism.

  • PDF