• Title/Summary/Keyword: Control flow

Search Result 7,427, Processing Time 0.034 seconds

CPN Management Model and Network Access Flow/Congestion Control in ATM Network (CPN의 관리 모델과 망 엑세스 흐름/혼잡 제어)

  • 김양섭;권혁인;김영찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.8
    • /
    • pp.2096-2105
    • /
    • 1998
  • As there can be coincident bursts which may result in congetsion in a node of ATM network, reactive flow control schemes are required to guarantee user's Quality of Service. But, the high speed characteristics of ATM networks make it difficult to control source transmission rate in reacting to congestions in intermediate nodes. Therefore, flow control in Customer Premise Network may be more efficient than end-to-end flow control. In this paper, we propose a management model for flow ontrol in CPN and new Network Access Flow/Congestsion control scheme to utilize efficiently Virtual Path Connection.

  • PDF

An Information Flow Security Based on Protected Area in eCommerce (전자 거래에서 보호 영역을 기반으로 하는 정보 흐름 보안 방법)

  • Seo, Yang-Jin;Han, Sang-Yong
    • The Journal of Society for e-Business Studies
    • /
    • v.15 no.1
    • /
    • pp.1-16
    • /
    • 2010
  • Confidentiality is one of the most important requirements of information protection systems. The access control technique has been used to provide confidentiality, but it has fundamental problems in that it cannot prevent violations of confidentiality committed by authorized users. Information flow control is a technique introduced to resolve such problems, and many approaches based on programming languages have been proposed. However, it is not easy for a programmer to implement the technique at the source code level. Furthermore, the practicality of information flow control is difficult to demonstrate because it does not provide control over programs that have already been developed. This paper proposes a method that enables a practical information flow control through using a protected area, a separate part of computer system storage. Case studies are given to show its usefulness.

Multicore Flow Processor with Wire-Speed Flow Admission Control

  • Doo, Kyeong-Hwan;Yoon, Bin-Yeong;Lee, Bhum-Cheol;Lee, Soon-Seok;Han, Man Soo;Kim, Whan-Woo
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.827-837
    • /
    • 2012
  • We propose a flow admission control (FAC) for setting up a wire-speed connection for new flows based on their negotiated bandwidth. It also terminates a flow that does not have a packet transmitted within a certain period determined by the users. The FAC can be used to provide a reliable transmission of user datagram and transmission control protocol applications. If the period of flows can be set to a short time period, we can monitor active flows that carry a packet over networks during the flow period. Such powerful flow management can also be applied to security systems to detect a denial-of-service attack. We implement a network processor called a flow management network processor (FMNP), which is the second generation of the device that supports FAC. It has forty reduced instruction set computer core processors optimized for packet processing. It is fabricated in 65-nm CMOS technology and has a 40-Gbps process performance. We prove that a flow router equipped with an FMNP is better than legacy systems in terms of throughput and packet loss.

Active Flow Control Technology for Vortex Stabilization on Backward-Facing Step (와류 안정화를 위한 후향계단 유동 능동제어기법)

  • Lee, Jin-Ik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.246-253
    • /
    • 2013
  • This paper addresses the technology of active flow control for stabilizing a flow field. In order for flow field modeling from the control point of view, the huge-data set from CFD(computational fluid dynamics) are reduced by using a POD(Proper Orthogonal Decomposition) method. And then the flow field is expressed with dynamic equation by low-order modelling approach based on the time and frequency domain analysis. A neural network flow estimator from the pressure information measured on the surface is designed for the estimation of the flow state in the space. The closed-loop system is constructed with feedback flow controller for stabilizing the vortices on the flow field.

A study on the Characteristics of In-Cylinder Intake Flow in Spark Ignition Engine Using the PIV

  • Lee Suk-Young;Jeong Ku-Seob;Jeon Chung-Hwan;Chang Young-June
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.704-715
    • /
    • 2005
  • In this study, to investigate in-cylinder tumble or swirl intake flow of a gasoline engine, the flow characteristics were examined with opening control valve (OCV) and several swirl control valves (SCV) which intensify intake flow through steady flow experiment, and also turbulent characteristics of in-cylinder flow field were investigated by 2-frame cross-correlation particle image velocimetry (PIV) method. In the investigation of intake turbulent characteristics using PIV method, the different flow characteristics were showed according to OCV or SCV figures. The OCV or SCV installed engine had higher vorticity and turbulent kinetic energy than a baseline engine, especially around the wall and lower part of the cylinder. Above all, SCV B type was superior to the others. About energy dissipation and reynolds shear stress distribution, a baseline engine had larger loss than OCV or SCV installed one because flow impinged on the cylinder wall. It should be concluded, from what has been said above, as swirl component was added to existing tumble flow adequately, it was confirmed that turbulent intensity was enlarged, flow energy was conserved effectively through the experiment. In other words, there is a suggestion that flow characteristics as these affected to in-cylinder combustion positively.

An Experiment on the Flow Control Characteristics of a Passive Fluidic Device (피동적 유체기구의 유동 조절 특성에 관한 실험)

  • Seo, Jeong-Sik;Song, Chul-Hwa;Cho, Seok;Chung, Moon-Ki;Choi, Young-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.338-345
    • /
    • 2000
  • A model testing has been performed to investigate the flow characteristics of a vortex chamber, which plays a role of a flow switch and passively controls the discharge flow rate. This method of passive flow control is a matter of concern in the design of advanced nuclear reactor systems as an alternative to the active flow control to provide emergency water to the reactor core in case of postulated accidents like LOCA (Loss-Of-Coolant Accident). By changing the inflow direction in the vortex chamber and varying the flow resistance inside the chamber, the vortex chamber can control passively the injection flowrate. Fundamental characteristics such as discharge flow rate and pressure drop of the vortex chamber are measured, and its parametric effects on the performance of the vortex chamber are also systematically investigated.

Active Control Methods for Drag Reduction in Flow over Bluff Bodies (뭉툭한 물체 주위 유동에서 항력 감소를 위한 능동 제어 방법)

  • Choi Haecheon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.11-16
    • /
    • 2002
  • In this paper, we present two successful results from active controls of flows over a circular cylinder and a sphere for drag reduction. The Reynolds number range considered for the flow over a circular cylinder is 40-3900 based on the free-stream velocity and cylinder diameter, whereas for the flow over a sphere it is $10^{5}$ based on the free-stream velocity and sphere diameter. The successful active control methods are a distributed (spatially periodic) forcing and a high-frequency (time periodic) forcing. With these control methods, the mean drag and lift fluctuations decrease and vortical structures are significantly modified. For example, the time-periodic forcing at a high frequency (larger than 20 times the vortex shedding frequency) produces $50{\%}$ drag reduction for the flow over a sphere at $Re=10^{5}$. The distributed forcing applied to the flow over a circular cylinder results in a significant drag reduction at all the Reynolds numbers investigated.

  • PDF

Wind Tunnel Test of 2D Model for Plasma Flow Control using DBD Plasma Actuator (DBD 플라즈마 구동기를 이용한 2차원 모델의 플라즈마 유동제어 풍동시험)

  • Yun, Su-Hwan;Kim, Tae-Gyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.527-528
    • /
    • 2012
  • DBD (Dielectric Barrier Discharge) plasma actuator was designed for aerodynamic drag reduction using plasma flow control, and the drag reduction was measured by wind-tunnel tests using 2D test model. At the zero wind velocity, the plasma flow control had no effect on the drag reduction because the flow separation and surface friction drag were not occurred. At the wind velocity of 2m/s, 9.7% of drag was reduced by the flow separation control. The drag reduction decreased as the wind velocity increased.

  • PDF

Priority-based Scheduling Policy for OpenFlow Control Plane

  • Kasabai, Piyawad;Djemame, Karim;Puangpronpitag, Somnuk
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.733-750
    • /
    • 2019
  • Software Defined Networking (SDN) is a new network paradigm, allowing administrators to manage networks through central controllers by separating control plane from data plane. So, one or more controllers must locate outside switches. However, this separation may cause delay problems between controllers and switches. In this paper, we therefore propose a Priority-based Scheduling policy for OpenFlow (PSO) to reduce the delay of some significant traffic. Our PSO is based on packet prioritization mechanisms in both OpenFlow switches and controllers. In addition, we have prototyped and experimented on PSO using a network simulator (ns-3). From the experimental results, PSO has demonstrated low delay for targeted traffic in the out-of-brand control network. The targeted traffic can acquire forwarding rules with lower delay under network congestion in control links (with normalized load > 0.8), comparing to traditional OpenFlow. Furthermore, PSO is helpful in the in-band control network to prioritize OpenFlow messages over data packets.

A MFC Control Algorithm Based on Intelligent Control

  • Lee, Seok-Ki;Lee, Seung-Ha;Lee, Yun-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1295-1299
    • /
    • 2003
  • The Mass Flow Controller(MFC) has become crucial in semiconductor manufacturing equipments. It is an important element because the quality and the yield of a semiconductor process are decided by the accurate flow control of gas. Therefore, the demand for the high speed and the highly accurate control of MFCs has been requested. It is hard to find an article of the control algorithm applied to MFCs. But, it is known that commercially available MFCs have PID control algorithms. Particularly, when the system detects the flow by way of heat transfer, MFC control problem contains the time delay and the nonlinearity. In this presentation, MFC control algorithm with the superior performance to the conventional PID algorithm is discussed and the superiority is demonstrated through the experiment. Fuzzy controller was utilized in order to compensate the nonlinearity and the time delay, and the performance is compared with that of a product currently available in the market. The control system, in this presentation, consists of a personal computer, the data acquisition board and the control algorithm carried out by LabWindows/CVI program on the PC. In addition, the method of estimating an actual flow from sensor output containing the time delay and the nonlinearity is presented. In conclusion, according to the result of the experiment, the proposed algorithm shows better accuracy and is faster than the conventional controller.

  • PDF