• 제목/요약/키워드: Control flow

검색결과 7,462건 처리시간 0.04초

Reduced Switch Count Topology of Current Flow Control Apparatus for MTDC Grids

  • Diab, Hatem Yassin;Marei, Mostafa Ibrahim;Tennakoon, Sarath B.
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1743-1751
    • /
    • 2016
  • The increasing demand for high voltage DC grids resulting from the continuous installation of offshore wind farms in the North Sea has led to the concept of multi-terminal direct current (MTDC) grids, which face some challenges. Power (current) flow control is a challenge that must be addressed to realize a reliable operation of MTDC grids. This paper presents a reduced switch count topology of a current flow controller (CFC) for power flow and current limiting applications in MTDC grids. A simple control system based on hysteresis band current control is proposed for the CFC. The theory of operation and control of the CFC are demonstrated. The key features of the proposed controller, including cable current balancing, cable current limiting, and current nulling, are illustrated. An MTDC grid is simulated using MATLAB/SIMULINK software to evaluate the steady state and dynamic performance of the proposed CFC topology. Furthermore, a low power prototype is built for a CFC to experimentally validate its performance using rapid control prototyping. Simulation and experimental studies indicate the fast dynamic response and precise results of the proposed topology. Furthermore, the proposed controller offers a real solution for power flow challenges in MTDC grids.

베인 펌프용 유량 제어부의 전산설계에 관한 연구 (A Study on the computer aided design for flow control valve of vane pump)

  • 이윤태
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.555-560
    • /
    • 2000
  • The modeling and the numerical analysis are done so as to develop the Computer Aided Design program for the design of flow control valve attached to the vane pump. The factors affecting the flow rate characteristics, are analyzed by the experiments and the numerical methods. It is shown that the main factor affecting to the first control flow is the diameter of small rod of the spool, the main factor affecting to the second control flow is the diameter of big rod of the spool, the main factors affecting to the cut off are the main spring constant, the initial displacement of main spring and small diameter of the spool, and the dropping slope characteristics of flow rate are decided by the chamfer of spool and the dynamic characteristics of the spool.

  • PDF

환자통증조절장치(PCA)의 유량제어조절기 개발 (Development of the Flow Control Regulator for Patient Controlled Analgesia)

  • 김세윤;송성재;서현배
    • 유공압시스템학회논문집
    • /
    • 제7권4호
    • /
    • pp.39-43
    • /
    • 2010
  • The flow regulators we widely use have some disadvantages. They have a constant flow within each regulator and an inaccuracy with extruding capillary. In this study, we have developed a new type of regulator which was made up of two different capillary tubes overlapped each other. The developed regulator can vary and control the amount of flow. The design parameters of the developed regulator are obtained by using the analytical software. We have proved that the developed regulator can control flow properly through making a trial product and experiment.

  • PDF

온수분배기용 유량제어밸브의 개발 (Development of Flow Control Valves for Hot Water Distribution Manifolds)

  • 권우철;윤준용;유선학
    • 한국유체기계학회 논문집
    • /
    • 제13권4호
    • /
    • pp.11-17
    • /
    • 2010
  • The developed control valves, installed on the hot water distribution manifolds for the floor heating system, consist of the balancing valves and the shut-off valves. The balancing valve was designed to improve the flow control performance and to reduce the noise emitted from the valve by modification of the general V port. The port of the shut-off valve was designed with two ceramic plates, working by rotating upper plate, to improve the duration and to reduce the noise. For the evaluation of the new valves, the flow rate was measured and noise level test was carried out. The test results showed that the error of the flow rate accuracy test for the flow balance of each manifold circuit was less than ${\pm}3%$ and the noise level was less than 35 dB(A).

초음속 노즐에서 발생하는 비대칭 유동의 제어에 관한 연구 (Control of the Asymmetric Flow in a Supersonic Nozzle)

  • ;;;;;김희동
    • 한국가시화정보학회지
    • /
    • 제9권2호
    • /
    • pp.61-65
    • /
    • 2011
  • Several previous works on rocket nozzle flows have revealed the existence of the transition from FSS to RSS and the occurrence of asymmetric flow associated with the boundary layer separation, which can cause excessive side-loads of the propulsion system. Thus, it is of practical importance to investigate the asymmetric flow behaviors of the propulsion nozzle and to develop its control method. In the present study, the asymmetric flow control method using a cavity system was applied to supersonic nozzle flow. Time-dependent asymmetric flow was experimentally investigated with the rate of change of the nozzle pressure ratio. The results obtained showed that the cavity system installed on nozzle wall would be helpful in fixing the unsteady motions of the boundary layer separation, consequently reducing the possibility of the occurrence of the asymmetric flow.

유동제어 성형기술을 이용한 허브제품의 냉간단조 공정설계 (Process Design of Cold Forged Hub by Flow Control Forming Technique)

  • 박종남;김동환;김병민
    • 한국정밀공학회지
    • /
    • 제19권6호
    • /
    • pp.86-95
    • /
    • 2002
  • This paper suggests the new technology to control metal flow in order to reduce the number of preforming and the machining for the cold forged product with complex geometry. This technology is the combined forming that consists of bulk and sheet forming with double action dies. To analyze the process, finite element simulation has been performed. The proposed technology is applied to hub model that is part of air conditioner clutch. The purpose of this study is to investigate the material now of hub through the relative-velocity control of punch and mandrel using the flow control forming technique.

주행속도 보상형 붐방제기의 개발 (Development of a Flow Compensating Boom Sprayer for the Speed Variation)

  • 구영모;정재은
    • Journal of Biosystems Engineering
    • /
    • 제23권3호
    • /
    • pp.211-218
    • /
    • 1998
  • A variable flow-controlled boom sprayer was developed and evaluated. Field tests were conducted to evaluate the adoptability of the sprayerr with optimal conditions. Negative response time was obtained from the field test because pump and PTO were interlocked with the speed of sprayer. Another reason for the negative value was due to the definition of the response time. With constant on-time control, the system was unstable at the conditions of small tolerance and long control interval. The performances of the spray system were stable and accurate. The stable and synchronous responses were achieved with a variable on-time control. The flow control system with an optimal condition (1.0 sec of control interval, 2 of damping ratio, 1% of tolerance) provided the proper performance for uniform spraying. A standard operating procedure of the flow compensating boom sprayer for the ground speed variation was presented and recommended.

  • PDF

석탄 화력발전소 연소공기량 제어 동특성 개선방안 (Dynamic Response Improvement Method for Combustion Air Flow Control in Coal Fired Power Plant)

  • 유광명
    • 조명전기설비학회논문지
    • /
    • 제26권8호
    • /
    • pp.88-95
    • /
    • 2012
  • When controling combustion air flow in coal fired power plant the furnace safety must be considered first prior to plant efficiency. therefore it is very important to set air flow demand exactly for safe operation and maintenance. This paper analyze air flow control loop in power plant and introduce the method to improve dynamic response time. Simulation result shows this scheme is adoptable and provide better performance.

가스 스월버너의 공연비 제어에 관한 연구 (Study on the control of fuel-air ratio ofgas swirl burner)

  • 김인규;김영수;김양호;김경수;김지원
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1999년도 제19회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.129-138
    • /
    • 1999
  • In this paper, our main issue is that establishing the control procedure of continuous gas flow rate according to combustion fan RPM. For this, first, we decide the optimum operating condition of gas swirl burner through analysis of combustion characteristics - thermal efficiency, combustion efficiency and exhaust gases such as CO, $CO_{2}$, $O_{2}$, $NO_{x}$ and THC. Second, fuel gas flow rate of gas valve is decided with considering excess air ratio and combustion fan RPM is decided by the target of combustion air flow rate. Finally, experimental operating equation is acquired by regression for gas valve and combustion fan. This equation is the control equation of continuous gas flow rate and always gas flow rate is decided by combustion fan operating RPM.

  • PDF

시뮬레이션을 통한 생산흐름통제시스템의 성능비교 (Performance Comparison between Material Flow Control Mechanisms Using Simulation)

  • 박상근;하정훈
    • 산업경영시스템학회지
    • /
    • 제35권1호
    • /
    • pp.115-123
    • /
    • 2012
  • Material flow control mechanism is a kind of operational policy in manufacturing. It is very important because it varies throughput, throughput time, and work-in-process (WIP) under the same manufacturing resources. Many Researchers have developed various material flow control mechanisms and insisted that their mechanism is superior to others. However the experimental environment used in the performance comparison are different and impractical. In this paper, we set various manufacturing environments to fairly compare five previous material flow control mechanism : Push, Pull, CONWIP, Gated MaxWIP, and Critical WIP Loops. The simulation results show that the Push is superior to others in both of throughput and WIP if required demand is less than 80% of capacity. In addition, the performance of CONWIP and its variants are not different statistically.