• Title/Summary/Keyword: Control criterion

Search Result 771, Processing Time 0.03 seconds

New Stability Analysis of a Single Link TCP Vegas Model

  • Park, Poo-Gyeon;Choi, Doo-Jin;Choi, Yoon-Jong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2430-2434
    • /
    • 2003
  • This paper provides a new approach to analyze the stability of TCP Vegas, which is a kind of feedback-based congestion control algorithm. Whereas the conventional approaches use the approximately linearized model of the TCP Vegas along equilibrium points, this approach uses the exactly characterized dynamic model to get a new stability criterion via a piecewise and delay-dependent Lyapunov-Krasovskii function. Especially, the resulting stability criterion is formulated in terms of linear matrix inequalities (LMIs). Using the new criterion, this paper shows that the current TCP Vegas algorithm is stable in the sufficiently wide region of network delay and link capacity.

  • PDF

Development of an Algorithm for Searching Optimal Temperature Setpoint for Lettuce in Greenhouse Using Crop Growth Model (작물생장모델을 이용한 상추의 온실 최적설정온도 탐색 알고리즘의 개발)

  • 류관희;김기영;김희구;채희연
    • Journal of Biosystems Engineering
    • /
    • v.24 no.5
    • /
    • pp.445-452
    • /
    • 1999
  • This study was conducted to develop a searching algorithm for optimal daily temperature setpoint greenhouse. An algorithm using crop growth and energy models was developed to determine optimum crop growth environment. The results of this study were as follows: 1. Mathematical models for crop growth and energy consumption were derived to define optimal daily temperature setpoint. 2. Optimum temperature setpoint, which could maximize performance criterion, was determined by using Pontryagin maximum principle. 3. Dynamic control of daily temperature using the developed algorithm showed higher performance criterion than static control with fixed temperature setpoint. Performance criteria for dynamic control models were with simulated periodic weather data and with real weather data, increased by 48% and 60%, respectively.

  • PDF

A New Performance Criterion for Cusum Control Chart (누적합 관리도에 대한 새로운 성능 평가 기준)

  • Lee, Yoon-Dong;Ahn, Byoung-Jin
    • Journal of Korean Society for Quality Management
    • /
    • v.33 no.4
    • /
    • pp.96-102
    • /
    • 2005
  • Cusum control chart is an efficient method to detect the change of process status. Many variants of cusum have considered, and the effects of design parameters have reviewed. To find the best cusum out of variants and to decide the best values of the design parameters, we need a criterion measuring the performance of the cusum control chart. People used and suggested several criterions which appear to be similar, but those have quite different properties. In this paper we review the properties of performance measure of cusum and its variants. Our goal is to provide fair and impartial criterion for comparison of cusums when the decision boundaries of the cusums are much different each other. We comparatively tested newly suggested measure and traditional measure with the examples of cumulative scored chart as a special case of cusum chart.

Design of Multi-loop PID Controllers Based on the Generalized IMC-PID Method with Mp Criterion

  • Vu Truong Nguyen Luan;Lee Jie-Tae;Lee Moon-Yong
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.2
    • /
    • pp.212-217
    • /
    • 2007
  • A new method of designing multi-loop PID controllers is presented in this paper. By using the generalized IMC-PID method for multi-loop systems, the optimization problem involved in finding the PID parameters is efficiently simplified to find the optimum closed-loop time constant in a reduced search space. A weighted sum Mp criterion is proposed as a performance cost function to cope with both the performance and robustness of a multi-loop control system. Several illustrative examples are included to demonstrate the improved performance of the multi-loop PID controllers obtained by the proposed design method.

A Study on the Control of the Floor Vibration in a Research Building (연구소(硏究所) 건물(建物)의 슬래브 진동(振動) 성능개선(性能改善) 연구(硏究))

  • Baik, In-Whee;Kang, Ho-Sub;Sohn, Young-Kyoo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.3
    • /
    • pp.75-82
    • /
    • 2007
  • A vibration in the building occurs by influences of the facility equipment and the structural system. As the building recently becomes higher and bigger, the vibration in the floor slab is issued. Specially, the vibration with $4{\sim}8Hz$ frequency is harder to control than any other range of frequency. This vibration easily affects human sensibility and often makes the resonance phenomenon by corresponding with the floor slab's natural frequency when people and heavy equipments move. Moreover, the permission regulations for the vibration of the building are established by building's purposes. However, it is not subdivided in detail and sometimes ambiguous to each client. Even though the vibration could cause negative influences in a research building, there is not the vibration criterion for a research building. Therefore, it is necessary to set up its own vibration criterion with the client before building and to keep checking this vibration criterion under the construction. This study proposes the reasonable control methods and the vibration criterion for floor slab's vibration which are adapted to the R4-project. The R4-project is a research building and a high-rise building also. Accordingly, this study could help to the next similar project in the design and the construction phase.

Consideration to the Stability of FLC using The Circle Criterion (Circle Criterion을 이용한 FLC의 안정도에 대한 고찰)

  • Lee, Kyoung-Woong;Choi, Han-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.525-529
    • /
    • 2009
  • Most of FLC received input data from error e and change-of-error e' with no relation with system complexity. Basic scheme follows typical PD and PI or PID Controller and that has been developed through fixed ME In this paper, We studied the relationship between MF and system response and system response through changing Fuzzy variable of consequence MF and propose the simple FLC using this relationship. The response of FLC is changed according to the width of Fuzzy variable of consequence MF. As changing the Fuzzy variable of consequence MF shows various nonlinear characteristic, we studied the relation between response and MF using analytical method. We designed the effective FLC using three-variable MF and nine rules and took simulation for verification. In this study, we propose the method to design system with FLC in stability point which is an impotent characteristic of designing system. The circle criterion which is adapted to analysis the nonlinear system is put to use for proposed method. Since SISO FLC has a time-invariant and odd characteristic we can use the critical point not disk which is generally used to determine the stability in the circle criterion, to determine the stability. Using this, we can get the maximum critical point plot of SISO FLC with changing the consequence fuzzy variables. The predetermined critical point plot of FLC can be used to decide the region of the system to be stable. This method is effectively used to design the SISO FLC.

A Study on the Optimal Control Strategy of Air-Conditioning System with Slab Thermal Storage - Results Influenced by the Choice of a Criterion Function - (슬래브축열의 최적제어방책에 관한 연구 -평가함수의 선택이 결과에 미치는 영향-)

  • Jung, Jae-Hoon;Shin, Young-Gy
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.11
    • /
    • pp.896-905
    • /
    • 2006
  • An optimal control of an air-conditioning system with slab thermal storage is investigated by making use of the Maximum Principle. An optimal heat input to a plenum chamber and an air-conditioned room is determined by minimizing a criterion function which is given as integral sum of two terms. The first term is the square of the deviation in the room air temperature from the set-point value, and the second is the absolute value of the heat input. The result indicates that it tries to keep a room air temperature in set-point value by heating as much as possible at the time of a setup of a room air temperature or just before that, in order to avoid a heat loss arising at the time of the non-air conditioning. The result is compared with that of the case when the square of the heat input is used as a criterion.

Effects of plyometric training on Sargent jump, posture control and lower extremity injury criterion in Taekwondo demonstrator (플라이오메트릭 트레이닝이 태권 시범 선수들의 서전트 점프, 자세 조절 및 하체 부상 준거에 미치는 영향)

  • Park, Woo-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.851-859
    • /
    • 2021
  • The purpose of this study was to investigate the effects of six weeks of plyometric training on Sargent jumps, posture control, and lower extremity injury criterion in Taekwondo demonstrator. Twenty healthy collegiate Taekwoondo demontrators were randomly assigned to either an exercise group (Ex = 10), and a control group (Con = 10), Con maintained their normal Taekwoondo demontration training schedule. Whereas Ex group completed the plyometric program in three times a week, 60 minute for 6 weeks. Testing before and after training include the Sargent jump, back muscle strength, Y-balance and lower extremity injury criterion. There are no significant increase in back muscle strength, but significant increase in Sargent jump. In postural control, the anterior was not significant, but there was a significant increase in the left and right posterolateral, posteromedial and the total score showed that there was no risk of injuries. In conclusion, plyometric training is a training method that needs to be actively utilized for power, dynamic posture control, lower extremity injury prevention, and rehabilitation.

A novel smart criterion of grey-prediction control for practical applications

  • Z.Y. Chen;Ruei-yuan Wang;Yahui Meng;Timothy Chen
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.69-78
    • /
    • 2023
  • The purpose of this paper is to develop a scalable grey predictive controller with unavoidable random delays. Grey prediction is proposed to solve problems caused by incorrect parameter selection and to eliminate the effects of dynamic coupling between degrees of freedom (DOFs) in nonlinear systems. To address the stability problem, this study develops an improved gray-predictive adaptive fuzzy controller, which can not only solve the implementation problem by determining the stability of the system, but also apply the Linear Matrix Inequality (LMI) law to calculate Fuzzy change parameters. Fuzzy logic controllers manipulate robotic systems to improve their control performance. The stability is proved using Lyapunov stability theorem. In this article, the authors compare different controllers and the proposed predictive controller can significantly reduce the vibration of offshore platforms while keeping the required control force within an ideal small range. This paper presents a robust fuzzy control design that uses a model-based approach to overcome the effects of modeling errors. To guarantee the asymptotic stability of large nonlinear systems with multiple lags, the stability criterion is derived from the direct Lyapunov method. Based on this criterion and a distributed control system, a set of model-based fuzzy controllers is synthesized to stabilize large-scale nonlinear systems with multiple delays.

Model-based iterative learning control with quadratic criterion for linear batch processes (선형 회분식 공정을 위한 이차 성능 지수에 의한 모델 기반 반복 학습 제어)

  • Lee, Kwang-Soon;Kim, Won-Cheol;Lee, Jay-H
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.3
    • /
    • pp.148-157
    • /
    • 1996
  • Availability of input trajectories corresponding to desired output trajectories is often important in designing control systems for batch and other transient processes. In this paper, we propose a predictive control-type model-based iterative learning algorithm which is applicable to finding the nominal input trajectories of a linear time-invariant batch process. Unlike the other existing learning control algorithms, the proposed algorithm can be applied to nonsquare systems and has an ability to adjust noise sensitivity as well as convergence rate. A simple model identification technique with which performance of the proposed learning algorithm can be significantly enhanced is also proposed. Performance of the proposed learning algorithm is demonstrated through numerical simulations.

  • PDF