• Title/Summary/Keyword: Control compensator

Search Result 798, Processing Time 0.028 seconds

A Sensorless Speed Control of an Interior Permanent Magnet Synchronous Motor Based on a Fuzzy Speed Compensator (퍼지 속도 보상기를 이용한 매입형 영구자석 동기 전동기의 센서리스 속도제어)

  • Kang, Hyoung-Seok;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1405-1411
    • /
    • 2007
  • In this paper, a new speed sensorless control based on a fuzzy compensator are proposed for the interior permanent magnet synchronous motor (IPMSM) drives. The conventional proportional plus integrate(PI) control are very sensitive to step change of the command speed, parameter variations and load disturbance. To cope with these problems of the PI control, the estimated speeds are compensated by using the fuzzy logic controller (FLC). In the FLC used by the speed compensator of the IPMSM, the system control parameters are adjusted by the fuzzy rule based system, which is a logical model of the human behavior for process control. The effectiveness of algorithm is confirmed by the experiments.

Robust Control of a 6-Link Electro-Hydraulic Manipulator using Parallel Feed forward Compensator (PFC보상기를 응용한 6축 전기 유압매니퓰레이터의 강인 제어)

  • 안경관;정연오
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.89-96
    • /
    • 2003
  • An electro-hydraulic manipulator using hydraulic actuators has many nonlinear abetments, and its parameter fluctuations are greater than those of an electrically driven manipulator. So it is relatively difficult to realize not only stable but also accurate trajectory control for the autonomous assembly tasks using hydraulic manipulators. In this report, we propose a two-degree-of-freedom control including parallel feedforward compensator (PFC) where PFC plays a very important role in the stability of a proposed control system. In the experimental results of the 6-link electro hydraulic manipulator, it is verified that the stability and the model matching performance are improved by using the proposed control method.

Stabilization of High-Voltage Static Var Compensator Using Switching Velocity and Temperature Control (스위칭 속도 및 온도 제어를 사용한 고압용 정지형 무효전력 보상장치의 안정화)

  • Kim, Yong-Tae;Lee, Chang-Seok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.2
    • /
    • pp.107-112
    • /
    • 2013
  • In the paper, velocity controller of switching module and temperature controller for the high-voltage static var compensator are proposed. Because of the continuous increase in demand for electric power, transmission and distribution facilities of power plant are required. There is a bottleneck problem of transportation routes according to new construction and expansion of power transmission facilities. Therefore there are researches to maximize the utilization of existing facilities and to increase transmission capacity without new construction. The previous static var compensator detects voltage of input circuit of power, switches the SCR directly and generates switching noise. The proposed method increases switching velocity and decreases noise using switching control based on the voltage between both sides of SCR. Also the proposed method enhance the stability using realtime temperature control for heating of the system from increase of switching velocity. We experiment the velocity and temperature control of the proposed high-voltage static var compensator in the real environment and verify the performance of the proposed system by applying in the real field.

Design of fuzzy compensator for compensate the backlash effect (백래쉬 현상의 보상을 위한 퍼지 보상기 설계)

  • Kim, Nam-Hoon;Huh, Uk-Youl;Kim, Jin-Geol;Kim, Byung-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.751-753
    • /
    • 2004
  • In rotating systems, backlash imposed limitations on the quality of control. System with gear is an example where this is a well-known limitation. In order to increase the controller performance, we design a fuzzy system to compensate the backlash effect. We prove that under certain conditions the fuzzy compensator guarantees that the backlash output converges to the desired trajectory. Simulation results show that the fuzzy compensator is robust to the backlash parameter.

  • PDF

Sag Voltage Compensator using Diode Rectifier and Series Inverter (다이오드 정류기와 인버터를 이용한 순간 전압 강하 보상기)

  • 이준기;박덕희;김희중;한병문;소용철
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.448-451
    • /
    • 1999
  • This paper describes controller development for a dynamic voltage compensator using a shunt diode converter and series inverter. The control system was designed using 1/4 period integrator and vector relationship between the supply voltage and load voltage. A simulation model and scaled hardware model were developed for analyzing performance of the controller and the whole system. Both results confirm that the dynamic compensator can restore the load voltage under the fault of the distribution system.

  • PDF

Jump resonance in anti-windup compensator for systems with saturating actuators (Anti-windup 보상기의 점프공진에 관한 연구)

  • 박영진;장원욱
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.1060-1066
    • /
    • 1992
  • One of the undesirable nonlinear phenomenon called 'wind up' occours when the integrator in the controller and the saturated actuator interact. Large overshoot, slow response, instability, limit cycle and jump resonance are the characteristics of wind up phenomenon. Several 'anti-windup' compensators have been developed to prevent some of the aforementioned nonlinear characteristics such as instabilituy and limit cycle, but none has studied the effect of antiwindup compensator on the jump resonance. In this paper, we developed an analyitcal method to design the compensator to prevent not only limit cycle but also jump resonance. An illustrative example is included to show the compensator eliminates jump resonance of effectively.

  • PDF

Digital Autopilot Design Using $\delta$-LQG/LTR Compensators ($\delta$-LQG/LTR보상기에 의한 디지털 자동조종장치 설계)

  • 이명의;김승환;권오규
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.9
    • /
    • pp.920-928
    • /
    • 1991
  • This paper proposes a design procedure based on the LQG/LTR (Linear Quadratic Gaussian/ Loop Transfer Recovery) method for a launch vehicle. Continuous-discrete type LQG/LTR compensators are designed using the e-transformation to overcome numerical problems occurring in the process of discretization. The e-LQG/LTR compensator using the e-transformation is compared width the z-LQG/LTR compensator using the z-transformation. The performance of the overall system controlled by the compensator is evaluated via simulations, which show that the discretization error problem is resolved and the control performances are satisfactory in the proposed compensator.

  • PDF

Position/Force Control of a Robot by a Nonlinear Compensator and Feedforward Control (비선형 보상기와 피드포워드 제어에 의한 로봇의 위치/힘 제어)

  • 황용연
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.232-240
    • /
    • 1998
  • This paper deals with a hybrid position/force control of a robot which is moving on the constrained object with constant force. The proposed controller is composed of a position and force controller. The position controller has a nonlinear compensator which is based on the dynamic robot model and the force controller is attached by feedforward element. A direct drive robot with hard nonlinearity which is controlled by the proposed algorithm has moved on the constrained object with a high stiffness and low stiffness. The results show that the proposed controller has more vibration suppression effects which is occurred to the constrained object with a high stiffness, than a existing feedback controller, and accurate force control can be obtained by comparatively a small feedback gain.

  • PDF

Robust Minimum-Time Control with Coarse/Fine Dual-Stage Mechanism

  • Kwon, Sang-Joo;Cheong, Joo-No
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1834-1847
    • /
    • 2006
  • A robust minimum-time control (RMTC) strategy is addressed and it is extended to the dual-stage servo design. Rather than conventional switching type sub-optimal controls, it is a reference following control approach where the predetermined minimum-time trajectory (MTT) is tracked by the perturbation compensator based feedback controller. First, the minimum-time trajectory for a mass-damper system is derived. Then, the perturbation compensator to achieve robust tracking performance in spite of model uncertainty and external disturbance is suggested. The RMTC is also applied to the dual-stage positioner which consists of coarse actuator and fine one. To best utilize the actuation redundancy of the dual-stage mechanism, a null-motion controller to actively regulate the relative motion between the two stages is formulated. The performance of RMTC is validated through simulation and experiment.

A Speed Sensorless Vector Control of Interior Permanent Magnet Synchronous Motors Using a Fuzzy Speed Compensator (퍼지속도보상기를 이용한 매입형 영구자석 동기전동기의 속도 센서리스 제어)

  • Kim, Cheon-Kyu;Kim, Young-Jo;Lee, Eul-Jae;Choi, Jung-Soo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1114-1115
    • /
    • 2007
  • In this paper, a new speed sensorless control based on a fuzzy compensator are proposed for the interior permanent magnet synchronous motor (IPMSM) drives. The conventional proportional plus integrate(PI) control are very sensitive to step change of the command speed, parameter variations and load disturbance. To cope with these problems of the PI control, the estimated speeds are compensated by using the fuzzy logic controller (FLC). In the FLC used by the speed compensator of the IPMSM, the system control parameters are adjusted by the fuzzy rule based system, which is a logical model of the human behavior for process control. The effectiveness of algorithm is confirmed by the experiments.

  • PDF