• Title/Summary/Keyword: Control System Variable

검색결과 2,195건 처리시간 0.032초

동기기를 사용한 계통연계형 가변속 풍력발전 시스템의 AC-DC-AC 컨버터 구현 및 제어 (Implementation and Control of AC-DC-AC Power Converter in a Grid-Connected Variable Speed Wind Turbine System with Synchronous Generator)

  • 송승호;김성주;함년근
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권12호
    • /
    • pp.609-615
    • /
    • 2005
  • A 30kW electrical power conversion system is developed for a variable speed wind turbine. In the wind energy conversion system(WECS) a synchronous generator with field current excitation converts the mechanical energy into electrical energy. As the voltage and the frequency of the generator output vary according to the wind speed, a 6-bridge diode rectifier and a PWM boost chopper is utilized as an ac-dc converter maintaining the constant dc-link voltage with only single switch control. An input current control algorithm for maximum power generation during the variable speed operation is proposed without any usage of speed sensor. Grid connection type PWM inverter converts dc input power to ac output currents into the grid. The active power to the grid is controlled by q-axis current and the reactive power is controlled by d-axis current with appropriate decoupling. The phase angle of utility voltage is detected using software PLL(Phased Locked Loop) in d-q synchronous reference frame. Experimental results from the test of 30kW prototype wind turbine system show that the generator power can be controlled effectively during the variable speed operation without any speed sensor.

Circle Criterion을 이용한 FLC의 안정도에 대한 고찰 (Consideration to the Stability of FLC using The Circle Criterion)

  • 이경웅;최한수
    • 제어로봇시스템학회논문지
    • /
    • 제15권5호
    • /
    • pp.525-529
    • /
    • 2009
  • Most of FLC received input data from error e and change-of-error e' with no relation with system complexity. Basic scheme follows typical PD and PI or PID Controller and that has been developed through fixed ME In this paper, We studied the relationship between MF and system response and system response through changing Fuzzy variable of consequence MF and propose the simple FLC using this relationship. The response of FLC is changed according to the width of Fuzzy variable of consequence MF. As changing the Fuzzy variable of consequence MF shows various nonlinear characteristic, we studied the relation between response and MF using analytical method. We designed the effective FLC using three-variable MF and nine rules and took simulation for verification. In this study, we propose the method to design system with FLC in stability point which is an impotent characteristic of designing system. The circle criterion which is adapted to analysis the nonlinear system is put to use for proposed method. Since SISO FLC has a time-invariant and odd characteristic we can use the critical point not disk which is generally used to determine the stability in the circle criterion, to determine the stability. Using this, we can get the maximum critical point plot of SISO FLC with changing the consequence fuzzy variables. The predetermined critical point plot of FLC can be used to decide the region of the system to be stable. This method is effectively used to design the SISO FLC.

회전자 속도와 주파수 편차에 따라 변하는 가변게인을 이용한 플라이휠 에너지 저장장치의 주파수 제어 (Frequency control of flywheel energy storage system based on a variable gain depending on the rotor speed and frequency deviation)

  • 이혜원;나운기;김종훈
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 전력전자학술대회
    • /
    • pp.354-355
    • /
    • 2018
  • Flywheel energy storage system (FESS) operates motor or generator by utilizing the stored kinetic energy in the rotating mass. Thus, the FESS can support the frequency control of the power system. However, the FESS is disabled when the rotor speed reaches to its minium value. Thus, the second frequency dip occurs in the power system. This paper proposes the frequency control scheme of FESS based on a variable gain depending on the rotor speed and frequency deviation. The proposed scheme prevents the second frequency dip because the variable gain decreases depending on the stored in the FESS. The performance of the proposed scheme is investigated for the IEEE 14-bus system.

  • PDF

Hybrid nonlinear control of a tall tower with a pendulum absorber

  • Orlando, Diego;Goncalves, Paulo B.
    • Structural Engineering and Mechanics
    • /
    • 제46권2호
    • /
    • pp.153-177
    • /
    • 2013
  • Pendulums can be used as passive vibration control devices in several structures and machines. In the present work, the nonlinear behavior of a pendulum-tower system is studied. The tower is modeled as a bar with variable cross-section with concentrated masses. First, the vibration modes and frequencies of the tower are obtained analytically. The primary structure and absorber together constitute a coupled system which is discretized as a two degrees of freedom nonlinear system, using the normalized eigenfunctions and the Rayleigh-Ritz method. The analysis shows the influence of the geometric nonlinearity of the pendulum absorber on the response of the tower. A parametric analysis also shows that, with an appropriate choice of the absorber parameters, a pendulum can decrease the vibration amplitudes of the tower in the main resonance region. The results also show that the pendulum nonlinearity cannot be neglected in this type of problem, leading to multiplicity of solutions, dynamic jumps and instability. In order to improve the effectiveness of the control during the transient response, a hybrid control system is suggested. The added control force is implemented as a non-linear variable stiffness device based on position and velocity feedback. The obtained results show that this strategy of nonlinear control is attractive, has a good potential and can be used to minimize the response of slender structures under various types of excitation.

유량제어방식에 따른 태양열 급탕시스템의 열성능 평가 (Thermal Performance Evaluation of Solar Hot Water System according to Flow Rate Control)

  • 백남춘;신우철
    • 한국태양에너지학회 논문집
    • /
    • 제31권5호
    • /
    • pp.140-145
    • /
    • 2011
  • In this study, the performance and behavior of solar heating system according to the system control scheme, variable flow control (proportional control) and constant flow control (on-off control) was carried out by experiment. The on-off control is used generally for solar thermal system by now. But the proportional control is used for the solar district heating system which is supplied the higher temperature of water than that of desired. The proportional control logic that pump speed is varied in an attempt to maintain a specified outlet temperature of solar heating system was developed and tested for the use widely for the small and medium solar thermal system. The results are as following. First, the proportional controller which is made here could be adopted the characteristics for setting temperature control. Second, the proportional control is better than the on-off control in the side of the performance of thermal stratification in storage tank. Third, the operating energy(electricity consumption by pump) of solar thermal system can be saved more than 60% using the proportional control comparing to the on-off control.

외란을 갖는 선형 시변 샘플링된 시스템에 대한 가변구조제어기 (Variable Structure Controller for Linear Time-Varying Sampled-Data Systems with Disturbances)

  • 박강박
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권12호
    • /
    • pp.556-561
    • /
    • 2002
  • In this paper, a discrete-time variable structure controller for linear time-varying sampled-data systems with disturbances is proposed. The proposed method guarantees that the system state if globally uniformly ultimately bounded (G.U.U.B), and the ultimate bound is shown to be the order of T, O(T), where T is a sampling period.

가변속 동기발전기의 전압제어 (A Voltage Control of Variable-Speed Synchronous Generator)

  • 공정식;서영택;오철수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.202-204
    • /
    • 1994
  • This paper is describing a voltage control of variable speed synchronous generator for wind-per generation system. The exciting system is adopted that the generator operates in a variable frequency and constant voltage. The generating voltage is controlled by field current varying the firing angle controller.

  • PDF

미분기하학 방법을 이용한 비선형 가변구조 제어기 설계 (Design of nonlinear variable structure controller using differential geometric methods)

  • 함철주;함운철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.1227-1233
    • /
    • 1993
  • In this paper we present the differential geometric approach for the analysis and design of sliding modes in nonlinear variable structure feedback systems. We also design the robust controller for the nonlinear system using variable structure control theory on the basis of differential geometric methods and feedback linearization applying Min-Max control based on the Lyapunov second method. The robustness against parameter uncertainties for robot manipulators with flexible joint is considered. Simulation results are presented and show the advantage of the proposed nonlinear control method.

  • PDF

An Electrohydraulic Position Servo Control Systems Using the Optimal Feedforward Integral Variable Structure Controller

  • Phakamach, Phongsak
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.936-941
    • /
    • 2004
  • An Optimal Feedforward Integral Variable Structure or FIVSC approach for an electrohydraulic position servo control system is presented in this paper. The FIVSC algorithm combines feedforward strategy and integral in the conventional Variable Structure Control (VSC) and calculating the control function to guarantee the existence of a sliding mode. Furthermore, the chattering in the control signal is suppressed by replacing the sign function in the control function with a smoothing function. The simulation results illustrate that the purposed approach gives a significant improvement on the tracking performances when compared with some existing control methods, like the IVSC and MIVSC strategies. Simulation results illustrate that the purposed approach can achieve a zero steady state error for ramp input and has an optimal motion with respect to a quadratic performance index. Moreover, Its can achieve accurate servo tracking in the presence of plant parameter variation and external load disturbances.

  • PDF

Tracking control of variable stiffness hysteretic-systems using linear-parameter-varying gain-scheduled controller

  • Pasala, D.T.R.;Nagarajaiah, S.;Grigoriadis, K.M.
    • Smart Structures and Systems
    • /
    • 제9권4호
    • /
    • pp.373-392
    • /
    • 2012
  • Tracking control of systems with variable stiffness hysteresis using a gain-scheduled (GS) controller is developed in this paper. Variable stiffness hysteretic system is represented as quasi linear parameter dependent system with known bounds on parameters. Assuming that the parameters can be measured or estimated in real-time, a GS controller that ensures the performance and the stability of the closed-loop system over the entire range of parameter variation is designed. The proposed method is implemented on a spring-mass system which consists of a semi-active independently variable stiffness (SAIVS) device that exhibits hysteresis and precisely controllable stiffness change in real-time. The SAIVS system with variable stiffness hysteresis is represented as quasi linear parameter varying (LPV) system with two parameters: linear time-varying stiffness (parameter with slow variation rate) and stiffness of the friction-hysteresis (parameter with high variation rate). The proposed LPV-GS controller can accommodate both slow and fast varying parameter, which was not possible with the controllers proposed in the prior studies. Effectiveness of the proposed controller is demonstrated by comparing the results with a fixed robust $\mathcal{H}_{\infty}$ controller that assumes the parameter variation as an uncertainty. Superior performance of the LPV-GS over the robust $\mathcal{H}_{\infty}$ controller is demonstrated for varying stiffness hysteresis of SAIVS device and for different ranges of tracking displacements. The LPV-GS controller is capable of adapting to any parameter changes whereas the $\mathcal{H}_{\infty}$ controller is effective only when the system parameters are in the vicinity of the nominal plant parameters for which the controller is designed. The robust $\mathcal{H}_{\infty}$ controller becomes unstable under large parameter variations but the LPV-GS will ensure stability and guarantee the desired closed-loop performance.