• Title/Summary/Keyword: Control Methods

Search Result 24,655, Processing Time 0.054 seconds

A performance study and conceptual design on the ramp tabs of the thrust vector control (추력방향제어장치인 램 탭의 개념설계 및 성능 연구)

  • Kim, Kyoung-Rean;Ko, Jae-Myoung;Park, Soon-Jong;Park, Jong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3068-3073
    • /
    • 2007
  • Aerodynamic forces and moments have been used to control rocket propelled vehicles. If control is required at very low speed, Those systems only provide a limited capability because aerodynamic control force is proportional to the air density and low dynamic pressure. But thrust vector control(TVC) can overcome the disadvantages. TVC is the method which generates the side force and roll moment by controlling exhausted gas directly in a rocket nozzle. TVC is classified by mechanical and fluid dynamic methods. Mechanical methods can change the flow direction by several objects installed in a rocket nozzle exhaust such as tapered ramp tabs and jet vane. Fluid dynamic methods control the flight direction with the injection of secondary gaseous flows into the rocket nozzle. The tapered ramp tabs of mechanical methods are used in this paper. They installed at the rear in the rocket nozzle could be freely moved along axial and radial direction on the mounting ring to provide the mass flow rate which is injected from the rocket nozzle. In this paper, the conceptual design and the performance study on the tapered ramp tabs of the thurst vector control has been carried out using the supersonic cold flow system and shadow graph. Numerical simulation was also performed to study flow characteristics and interactions between ramp tabs. This paper provides to analyze the location of normal shock wave and distribution of surface pressure on the region enclosed by the tapered ramp tabs.

  • PDF

An study on the ramp tabs for thurst vector control symmetrically installed at the supersonic nozzle exit (초음속 노즐 출구에 대칭적으로 설치한 추력방향제어장치인 램프 탭의 연구)

  • Kim, Kyoung-Rean;Ko, Jae-Myoung;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.6
    • /
    • pp.32-37
    • /
    • 2007
  • Aerodynamic forces and moments have been used to control rocket propelled vehicles. If control is required at very low speed, Those systems only provide a limited capability because aerodynamic control force is proportional to the air density and low dynamic pressure. But thrust vector control(TVC) can overcome the disadvantages. TVC is the method which generates the side force and roll moment by controlling exhausted gas directly in a rocket nozzle. TVC is classified by mechanical and fluid dynamic methods. Mechanical methods can change the flow direction by several objects installed in a rocket nozzle exhaust such as tapered ramp tabs and jet vane. Fluid dynamic methods control the flight direction with the injection of secondary gaseous flows into the rocket nozzle. The tapered ramp tabs of mechanical methods are used in this paper. They installed at the rear in the rocket nozzle could be freely moved along axial and radial direction on the mounting ring to provide the mass flow rate which is injected from the rocket nozzle. In this paper, the conceptual design and the study on the tapered ramp tabs of the thurst vector control has been carried out using the supersonic cold flow system and schlieren system. This paper provides the thrust spoilage, three directional forces and moments and distribution of surface pressure on the region enclosed by the tapered ramp tabs.

The Proposition of Efficient Nonlinear Solution Technique for Space Truss (공간 트러스에 대한 효율적인 비선형 해석 기법 제안)

  • 석창목;권영환
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.481-490
    • /
    • 2002
  • The purpose of this paper is to evaluate the efficiency of various solution techniques and propose new efficient solution techniques for space trusses. Solution techniques used in this study are three load control methods (Newton-Raphson Method, modified Newton-Raphson Method, Secant-Newton Method), two load-displacement control methods(Arc-length Method, Work Increment Control Method) and three combined load-displacement control methods(Combined Arc-length Method I , Combined Arc-length MethodⅡ, Combined Work Increment Control Method). To evaluate the efficiency of these solution techniques, we must examine accuracy of their solutions, convergences and computing times of numerical examples. The combined load-displacement control methods are the most efficient in the geometric nonlinear solution techniques and in tracing post-buckling behavior of space truss. The combined work increment control method is the most efficient in tracing the buckling load of spate trusses with high degrees of freedom.

Optimal Active-Control & Development of Optimization Algorithm for Reduction of Drag in Flow Problems(2) - Verification of Developed Methodologies and Optimal Active-Control of Flow for Drag Reduction (드래그 감소를 위한 유체의 최적 엑티브 제어 및 최적화 알고리즘의 개발(2) - 개발된 기법의 검증 및 드래그 감소를 위한 유체의 최적 액티브 제어)

  • Bark, Jai-Hyeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.671-680
    • /
    • 2007
  • The objective of this work is to reduce drag on a bluff body within a viscous flow by applying suction or injection of fluid along the surface of the body. In addition to minimizing drag, the optimal solution tends to reduce boundary layer separation and flow recirculation. When discretized by finite elements, the optimal control problem can be posed as a large-scale nonlinearly-constrained optimization problem. The constraints correspond to the discretized form of the Navier-Stokes equations. Unfortunately, solving such large-scale problems directly is essentially intractable. We developed several Sequential Quadratic Programming methods that are tailored to the structure of the control problem. Example problems of laminar flow around an infinite cylinder in two dimensions are solved to demonstrate the methodology. We use these optimal control techniques to study the influence of number of suction/injection holes and location of holes on the resulting optimized flow. We compare the proposed SQP methods against one another, as well as against available methods from the literature, from the point of view of efficiency and robustness. The most efficient of the proposed methods is two orders of magnitude faster than existing methods.

Controlling of Dam Gates with Outflow Control by Dynamic Fuzzy Inference (동적 퍼지 추론에 의한 방류량 조절 가능 댐 수문 제어)

  • Woo, Young-Woon;Lee, Soo-Jong;Kim, Kwang-Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.7
    • /
    • pp.75-82
    • /
    • 2008
  • Control of dam gates is a complex, nonlinear, and non-stationary control process and is significantly affected by hydrological conditions which are not predictable beforehand. In this paper, we proposed control methods based on a fuzzy inference method for the operation of dam gates. The proposed methods are not only suitable for controlling gates but also able to maintain target water level in order to prepare a draught, and able to control the amount of the outfow from a reservoir in order to prevent floods in lower areas of a river. In the proposed methods, we used the dynamic fuzzy inference method that membership functions can be varied by changing environment conditions for keeping up the target water level instead of conventional static fuzzy inference methods, and used additional fuzzy rules and membership functions for restricting the amount of the outflow. Simulation results demonstrated that the proposed methods produce an efficient solution for both of maintaining target water level defined beforehand and controlling the amount of the outflow.

  • PDF

A new concept of control system

  • Kawaguchi, Tadao;Yoshitani, Naoharu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.781-785
    • /
    • 1989
  • In the field of control technology, too, it is about time that the students should free themseleves from the paradigm of Newtonian mechanics. Otherwise, they might fail to grasp the essence of control. Now, let us consider the essence of control. Control consists of manipulating a particular object, matter, energy of environment on the basis of certain medium information. (measurement data, force, etc.) So, we shall look into the methods of manipulation. Here, we consider natural control, constraining control, and hybrid control as basic methods of manipulation. In this paper, we would like to put forward the daring proposal that it's called a Holon-type hybrid control system. It is intended to control a plat with complicated or unknown characteristics where a conventional control theory is not easy to apply. A prototype system has been developed and applied to a real plant. The control system is a multi-layer system. Each layer includes different control input. The important features of the system are as follows: 1) Each layer behaves autonomously and also cooperates with each other to optimize the whole plant. 2) The controller optimizes a plant without mathematical models when these models are not easy to obtain.

  • PDF

Unified Parametric Approaches for Observer Design in Matrix Second-order Linear Systems

  • Wu Yun-Li;Duan Guang-Ren
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.159-165
    • /
    • 2005
  • This paper designs observers for matrix second-order linear systems on the basis of generalized eigenstructure assignment via unified parametric approach. It is shown that the problem is closely related with a type of so-called generalized matrix second-order Sylvester matrix equations. Through establishing two general parametric solutions to this type of matrix equations, two unified complete parametric methods for the proposed observer design problem are presented. Both methods give simple complete parametric expressions for the observer gain matrices. The first one mainly depends on a series of singular value decompositions, and is thus numerically simple and reliable; the second one utilizes the right factorization of the system, and allows eigenvalues of the error system to be set undetermined and sought via certain optimization procedures. A spring-mass system is utilized to show the effect of the proposed approaches.

An Improved Method to Construct T-S Fuzzy Model

  • Min, Hyung-Gi;Jeung, Eun-Tae;Kwon, Sung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2264-2269
    • /
    • 2003
  • This paper presents an improved method that constructs an equivalent T-S fuzzy model for nonlinear systems expressed by nonlinear differential equations including terms of power series. The method in this paper has fewer numbers of the rules than the previous methods as well as exactly expresses nonlinear systems. Moreover, this method can get wider feasible area satisfying the stability conditions than the previous methods. We show the improvement of modeling by comparing the proposed method with two previous methods through an inverted pendulum on a cart.

  • PDF

Stator Flux Vector Control Of Induction Motor using Parameter Estimation (파라메터 추정을 통한 유도전동기의 고정자 자속 기준 벡터 제어)

  • Hahm, Nyun-Kun;Jun, Kee-Young;Kim, Sung-Nam;Lee, Seung-Hwan;Lee, Hoon-Goo;Han, Kyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2123-2125
    • /
    • 1997
  • In the induction motor control, the rotator flux estimation methods are used in the implement vector control of the induction motor instead of the potentical-meter or tacho-meter, a system is very sensitive in noise. In this paper, the parameters that do not affect the stablity of the system were applied in Off-Line tuning methods. In case of the rotator resistor that is sensitive. On-Line tuning methods applied in the steady state. We ascertained that the utility of a theory applied in stator flux orientation vector control through the simulation.

  • PDF

A Novel Type of Discrete Time Predictive Current Controllers for Parallel Resonant Inverters (병렬 공진형 인버터에서 사용되는 새로운 형태의 이산시간 예측 전류 제어기)

  • Huh, Sung-Hoi;Choy, Ick;Kim, Kwon-Ho;Ahn, Hyun-Sik;Kim, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.309-311
    • /
    • 1996
  • In this paper, we propose two types of novel discrete time current control methods of modified fixed band hysteresis control and optimal control for Parallel Resonant DC Link Inverters(PRDCLI). Because zero bus voltage intervals are generated on the DC link of PRDCLI, we can obtain the information of counter electromotive force(emf) by a simple estimation strategy. The proposed current controllers predict the currents of the next resonant cycle using the obstained information of counter emf and the average values of DC link voltages. The computer simulation results for a simple equivalent circuit of induction motor show that the proposed control methods are more effective than conventional methods.

  • PDF