• Title/Summary/Keyword: Control Arm

Search Result 1,241, Processing Time 0.03 seconds

Design and Control of the Master Arm for Control of Industrial Robot Arm (산업용 로봇 팔 제어를 위한 마스터 암 설계 및 제어)

  • Ji, Dae Hyeung;Jeon, Ji Hye;Kang, Hyeon Seung;Choi, Hyeung Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.12
    • /
    • pp.1055-1063
    • /
    • 2015
  • In this paper, a new master arm was developed as an input device of the remote control system for easy control of the industrial robot arm; it has a structure similar to the robot arm and is easy to wear. For control of the slave arm, related equations were derived about the joints between the master and slave arm; and thereby using them, the master arm control system was developed. Furthermore, a control simulator was developed for the convenient and accurate control of the slave arm. Experiments, about controlling the slave arm in applying the master arm, were performed to validate the developed simulator and the derived related equations.

Durability Evaluation of Automobile Control Arm (자동차용 컨트롤암의 내구성능 평가)

  • Kim, Jong-Kyu;Jang, Byung-Hyun;Park, Young-Chul;Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.168-172
    • /
    • 2012
  • Control arm is the structural component that pivots on two places. One end of the control arm is attached to the body frame and the other end is attached to the steering knuckle. The former research proposed the structural design by applying optimization technique with aluminum alloy. This study suggests a durability test method on the developed upper control arm to validate the analysis results. The durability analysis results of the developed control arm by using MSC Fatigue is confirmed to be close to infinite life. The weak model of developed control arm which occurs to finite life is made to perform the durability test and the zig design is developed in this process.

Prosthetic arm control using muscle signal (생체 근육 신호를 이용한 보철용 팔의 제어)

  • Yoo J.M.;Kim Y.T.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1944-1947
    • /
    • 2005
  • In this paper, the control of a prosthetic arm using the flex sensor signal is described. The flex sensors are attached to the biceps and triceps brchii muscle. The signals are passed a differential amplifier and noise filter. And then the signals are converted to digital data by PCI 6036E ADC. From the data, position and velocity of arm joint are obtained. Also motion of the forearm - flexion and extension, the pronation and supination are abstracted from the data by proposed algorithm. A two D.O.F arm with RC servo-motor is designed for experiment. The arm length is 200 mm, weight is 4.5 N. The rotation angle of elbow joint is $120^{\circ}$. Also the rotation angle of the wrist is $180^{\circ}$. Through the experiment, we verified the possibility of the prosthetic arm control using the flex sensor signal. We will try to improve the control accuracy of the prosthetic arm continuously.

  • PDF

Effects of Robot-Assisted Arm Training on Muscle Activity of Arm and Weight Bearing in Stroke Patients (로봇-보조 팔 훈련이 뇌졸중 환자의 팔에 근활성도와 체중지지에 미치는 영향)

  • Yang, Dae-jung;Lee, Yong-seon
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.28 no.1
    • /
    • pp.71-80
    • /
    • 2022
  • Background: This study investigated the effect of robot-assisted arm training on muscle activity of arm and weight bearing in stroke patients. Methods: The study subjects were selected 20 stroke patients who met the selection criteria. 10 people in the robot-assisted arm training group and 10 people in the task-oriented arm training group were randomly assigned. The experimental group performed robot-assisted arm training, and the control group performed task-oriented arm training for 6 weeks, 5 days a week, 30 minutes a day. The measurement tools included surface electromyography and smart insole system. Data were analyzed using independent sample t-test and the paired sample t-test. Results: Comparing the muscle activity of arm within the group, the experimental group and the control group showed significant differences in muscle activity in the biceps brachii, triceps brachii, anterior deltoid, upper trapezius, middle trapezius, and lower trapezius. Comparing the muscle activity of arms between the groups, the experimental group showed significant difference in all muscle activity of arm compared to the control group. Comparing the weight bearing within the groups, the experimental group showed significant difference in the affected side and non-affected side weight bearings and there were significant differences in anterior and posterior weight bearing. The control group showed significant difference only in the non-affected side weight bearing. Comparing the weight bearings between groups, the experimental group showed significant difference in the affected side and non-affected side weight bearings compared to the control group. Conclusion: This study confirmed that robot-assisted arm training applied to stroke patients for 6 weeks significantly improved muscle activity of arm and weight bearing. Based on these results, it is considered that robot-assisted arm training can be a useful treatment in clinical practice to improve the kinematic variables in chronic stroke patients.

The multiple Control Law Design of the Variable Structure Control for Angular Position Control of the Robot Arm with an Indirect Driving Joint Using Balance of the Inertial Moment (관성모멘트의 균형을 이용하는 간접구동관절을 갖는 로보트아암의 각위치 제어를 위한 가변구조제어기의 다중 제어법칙 설계)

  • Kim, Joong-Wan;Kang, Dae-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.76-83
    • /
    • 1996
  • We have developed the unconventional robot arm which is composed of the two main parts, one is a ball screw and the other is a robot arm. The dynamic systems of the robot arm and ball screw are unstable systems coupled with each other. The ball screw mechanism is unstable system but controllable system. The robot arm's dynamics is quasi stable system when ball screw's angular position is zero, else, unstable system. Our system has the duality between stability and controllability at the view point of control. This duality causes difficulty to control of the robot arm using normal control law. We have investigated the location of the characteristic roots of the dynamic equation. And we have found out that the best condition for the control of the arm is quasi stable state. In this paper, we have proposed multiple control laws which are consist of three components to guarantee the stability and controllability simultaneously. The computer simulations were carried out based on VSC about the angular position control of the robot arm, and it is confirmed that the good performances could be obtained by using new controller.

  • PDF

Vibration Control of a Flexible Fobot Manipulator (유연한 로봇팔의 진동제어)

  • 신효필;윤여산;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.229-232
    • /
    • 1996
  • The position control accuracy of the robot arm is decreased significantly when a long arm robot is operated at high speed. In this case, the robot arm must be modeled as a flexible structure, not a rigid one, and its control system will be necessarily designed with its elastic modes taken into account. In this paper, the vibration control of a one-link flexible robot arm is presented. The robot system consists of a flexible arm manufactured with thin aluminium plate, AC servomotor with a harmonic drive for speed reduction, optical encoder and accelerometer. The system is modeled with limited number of elastic modes, and its parameters are determined from the results of the experiments. The implemented control schemes are LQ control and sliding mode control. The experiments and digital simulations are carried out to test the validity of the system modeling, controller design, and active control implementation.

  • PDF

A Study on the Manufacture of Lower Control Arm by Casting/Forging Process (주조/단조 기술을 이용한 알루미늄 Lower Control Arm 제조에 관한 연구)

  • 유민수;권오혁;배원병
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.139-142
    • /
    • 2003
  • In this study, casting/forging process was used to produce an aluminum lower control arm for automobiles. Firstly, casting experiments were carried out to get an enhanced preform for forging the lower control arm. In the casting experiment, the effect of an additive, Sr, on the mechanical properties such as tensile strength and elongation and the microstructure of a cast preform were investigated. And a finite element analysis was peformed to determine an optimal configuration of the cast preform. Lastly, a forging experiment was carried out to make the final product of aluminum lower control arm by using the above cast preform. In the casting experiments, when 0.025% Sr was added into molten A356, the maximum values of tensile strength and elongation of the cast preform were obtained. In the forging experiment, It was confirmed that the optimal configuration of a cast preform predicted by FE analysis was very useful. The cast/forged product using designed preform was made without any defects.

  • PDF

Durability Assessment of a Control Arm Using 1/4 Car Test (1/4차량 시험을 통한 상부 컨트롤 암의 내구성 평가)

  • Ha, Min-Soo;Son, Hwan-Jung;Kim, Jong-Kyu;Park, Young-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.6
    • /
    • pp.16-20
    • /
    • 2010
  • This study proposes a structural design method for the upper control arm installed at the rear side of a SUV. The weight of control arm can be reduced by applying the design. In this research, the former includes optimization technology, and the latter the technologies for selecting aluminum as a steel-substitute material. Strength assessment is the most important design criterion in the structural design of a control arm. At the proto design stage of a new control arm, FE (finite element) analysis is often utilized to predict its strength. In this study, the kriging interpolation method is adopted to obtain the minimum weight satisfying the strength constraint and durability criteria. The optimum results determined from the in-house program are compared with those of ANSYS WORKBENCH. The durability assessment is obtained by a index of fatigue durability and trial & error method, MSC. Fatigue program.

Tip position control of translational 1-link flexible arm with tip mass (Tip mass를 갖는 병진운동 1-링크 탄성암 선단의 위치제어)

  • 이영춘;방두열;이성철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1036-1041
    • /
    • 1993
  • The tip of the flexible robot arm has to be controlled by the active control reducing vibration because it has residual vibration after getting to desired position. This paper presents an end-point position control of a 1-link flexible robot arm having tip mass by the PID control algorithm. The system is composed of a flexible arm with tip mass, dc servomotor and ballscrew mechanism under translational motion. The feedback signal composed of the tip displacement measured by laser sensor, estimated velocity and acceleration is used to control the base motion. Theoretical results are obtained by applying the Laplace transform and the numerical inversion method to the governing equations. After the flexible robot arm reaches to. the desired position, the residual vibration is controlled by the PID algorithm. This paper gives the simulation and experimental results of end-point responses according to changing tip-mass and arm length. And this algorithm shows good effects of reducing the residual vibration. Approximately, theoretical response is in good agreement with experimental one.

  • PDF

Mathematical modeling and simulation of an intelligent arm-wrestling system (지능형 Arm-wrestling system의 수학적 모델과 시뮬레이션)

  • Son I.X.;Lee H.S.;Kang C.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.275-276
    • /
    • 2006
  • An intelligent arm-wrestling system is recently developed in our laboratory that is comprised of an arm-force generation mechanism and a control system that detects the maximum arm-force of a user in the early stage of the match, generates a different game scenario each time, and executes force feedback control to implement the scenario. This paper presents the mathematical model of the force control system of the intelligent arm-wrestling system, and some improvements of it via experimental frequency responses using a control signal analyzer.

  • PDF