The 8th International Conference on Construction Engineering and Project Management
/
pp.443-452
/
2020
Worker's awkward postures and unreasonable physical load can be corrected by monitoring construction activities, thereby increasing the safety and productivity of construction workers and projects. However, manual identification is time-consuming and contains high human variance. In this regard, an automated activity recognition system based on inertial measurement unit can help in rapidly and precisely collecting motion data. With the acceleration data, the machine learning algorithm will be used to train classifiers for automatically categorizing activities. However, input acceleration data are extracted either from designed experiments or simple construction work in previous studies. Thus, collected data series are discontinuous and activity categories are insufficient for real construction circumstances. This study aims to collect acceleration data during long-term continuous work in a construction project and validate the feasibility of activity recognition algorithm with the continuous motion data. The data collection covers two different workers performing formwork at the same site. An accelerator, as well as portable camera, is attached to the worker during the entire working session for simultaneously recording motion data and working activity. The supervised machine learning-based models are trained to classify activity in hierarchical levels, which reaches a 96.9% testing accuracy of recognizing rest and work and 85.6% testing accuracy of identifying stationary, traveling, and rebar installation actions.
국가기술자격은 개인의 직업능력을 향상시키고, 기업과 국가의 경쟁력을 제고시키는 중요한 기능을 가지고 있다. 특히 '자격'은 '학력'과 함께 개인의 능력을 측정하여 객관적으로 보여주는 신호기능을 가지고 있고, "직무수행에 필요한 지식 기술 소양 등의 습득정도가 일정한 기준과 절차에 따라 평가 또는 인정되는 것"이다. 자격을 취득하기 위한 학습은 스마트러닝을 통하여 많이 이루어지고 있다. 최근 인터넷의 발전과 정보통신기술의 혁명으로 인해 정보와 지식을 중요시하는 지식사회로 진입하고 있다. 이러한 시대적 교육제도 변화에 발맞추어 최근 급성장을 거듭하고 있는 스마트러닝은 시간적, 공간적 제약 없이 교수-학습이 이루어지고 있다. 본 연구의 목적은 인간 본연의 심리욕구를 다룬 대표적인 이론인 기본심리욕구 요인과 인간의 동기를 결정지을 수 있는 ARCS 동기이론이 상호작용성과 학습몰입, 즐거움을 통해 스마트러닝의 지속적 사용의도에 영향을 미치는 인과관계를 실증 검증 하고자 한다. 구체적으로 ARCS 동기유발에서의 주의집중, 관련성, 자신감, 만족감을 통해 학습몰입에 어떠한 영향을 주는지 실증적으로 분석하고자 한다. 이를 통해 국가기술자격증 스마트러닝에서 수강생의 내재동기화를 지지함으로써 스마트러닝의 학습자들은 지속적 사용의도가 있다. 따라서 스마트러닝을 통한 국가기술자격증의 취득의 목적을 달성하여 기술의 습득은 물론 산업의 발전과 자격증의 활성화에 기여할 수 있다.
본 연구는 온라인, 오프라인 도구를 사용하는 학습자들을 대상으로 스마트러닝 학습앱의 사용자경험이 지속 사용 의도에 미치는 구조적인 관계를 기술수용모델을 통하여 이해하고, 학습형태 특성을 분류하였다. 또한, 스마트러닝 앱의 사용 경험을 기반으로 학습 도구와 콘텐츠 구성에 대한 사용자 경험 디자인 설계향상 방안을 모색하였다. 이를 위하여 개발된 스마트러닝 학습앱을 중고등학생 대상 학습자 84명을 대상으로 2개월간 사용 후 사용인식을 조사하였으며, PLS구조방정식 기법을 사용하여 자료를 분석하였다. 본 연구의 주요결과는 다음과 같다. 첫째, 시스템 및 콘텐츠 사용자 경험은 지각된 사용성과 지각된 사용 용이성에 유의미한 영향이 있었으며, 태도를 매개로 지속사용 의도에 미치는 영향은 유의미하였다. 둘째, 다중그룹 비교분석과 성별 그룹에서는 시스템 사용자경험이 지각된 유용성에 미치는 영향에서 유의미한 차이가 발생하였다. 선호학습 그룹에서는 유의미한 경로차이를 나타낸 것은 지각된 사용용이성과 지각된 유용성에서 태도 및 지속사용의도로의 경로였다. 셋째, 실제 가장 많이 사용하는 학습유형을 다차원척도법으로 분류한 결과 저차원으로 분리된 유형은 offline sync type, Online sync type, Ubiquitous learning type, Self-direct learning type으로 4가지 유형으로 나타났다.
In this paper, a higher-order feedforward neural network called ridge polynomial network (RPN) which shows good approximation capability for nonlnear continuous functions defined on compact subsets in multi-dimensional Euclidean spaces, is presented. This network provides more efficient and regular structure as compared to ordinary higher-order feedforward networks based on Gabor-Kolmogrov polynomial expansions, while maintating their fast learning property. the ridge polynomial network is a generalization of the pi-sigma network (PSN) and uses a specialform of ridge polynomials. It is shown that any multivariate polynomial can be exactly represented in this form, and thus realized by a RPN. The approximation capability of the RPNs for arbitrary continuous functions is shown by this representation theorem and the classical weierstrass polynomial approximation theorem. The RPN provides a natural mechanism for incremental function approximation based on learning algorithm of the PSN. Simulation results on several applications such as multivariate function approximation and pattern classification assert nonlinear approximation capability of the RPN.
Communications for Statistical Applications and Methods
/
제10권3호
/
pp.879-894
/
2003
We evaluated the efficiencies of applying attribute selection methods and prior discretization to supervised learning, modelled by C4.5 and Naive Bayes. Three databases were obtained from UCI data archive, which consisted of continuous attributes except for one decision attribute. Four methods were used for attribute selection : MDI, ReliefF, Gain Ratio and Consistency-based method. MDI and ReliefF can be used for both continuous and discrete attributes, but the other two methods can be used only for discrete attributes. Discretization was performed using the Fayyad and Irani method. To investigate the effect of noise included in the database, noises were introduced into the data sets up to the extents of 10 or 20%, and then the data, including those either containing the noises or not, were processed through the steps of attribute selection, discretization and classification. The results of this study indicate that classification of the data based on selected attributes yields higher accuracy than in the case of classifying the full data set, and prior discretization does not lower the accuracy.
대부분의 음성인식 시스템이 확률 모델을 기반으로 한 HMM 방법을 가장 많이 사용하고 있다. 한국어 고립 전화 숫자음 인식인 경우에 만약 충분한 학습 데이터가 주어지면 HMM 방법을 사용해도 높은 인식률을 얻는다 그러나 한국어 연속 전화 숫자음 인식인 경우에 비슷하게 발음되는 전화 숫자음들에 대해서는 HMM방법이 한계를 가지고 있다. 본 논문에서는 한국어 연속 전화 숫자음 인식에서 HMM 방법의 한계를 극복하기 위해 discriminant 학습 방법을 제시한다. 실험결과는 우리가 제시한 discriminant 학습 방법이 비슷하게 발음되는 전화 숫자음들에 대해서 높은 인식률을 갖는 것을 보여준다.
Learning rate is generally applied to estimate an appropriate production labor cost. Learning effect is obtained from repetitive work during the production period under 3 assumptions ; homogeneous production, same producer, quantity measure in continuous unit. However, production breaks occur frequently in Korean defense industry environment because of budget constraint and annual requirements. In this case previous learning effect can not be applied due to learning loss. This paper proposed the application of learning rate when a production break occurs in Korea defense industry. To obtain a learning loss, we surveyed various learning loss factors for different production breaks(6, 12, 18 months) from 4 defense industry companies. Then, we estimate the first unit labor hours in re-production phase after production break using Anderlohr method and Retrograde method with the result of the survey. This work is the first attempt to show a method which defines and evaluates the learning loss factors in Korean defense industry environment.
The purpose of this study is to identify core elements required of instruction consulting and to develop a systematic consulting procedure for successful Flipped Learning. The main contents of this study to achieve its purpose are as follows. First, core elements required of consulting are deduced by analyzing cases of instruction implemented with Flipped Learning. Second, consulting procedure is constructed based on core consulting elements of Flipped Learning. Based on the study results, the 3P process is suggested as the elements and procedure of instruction consulting for Flipped Learning. The 3P process has the following characteristics. The first stage Preparation involves guiding students to have an objective viewpoint about the lesson beginning with building a relationship with the instructor. Also, a lesson plan and source materials for lesson are selected and developed. The second stage Performance involves implementing lesson coaching oriented towards cooperative problem-solving to find better direction. The last stage Post-review involves introspection necessary for continuous quality improvement of lessons. The validity of the instruction consulting elements for Flipped Learning applied to deduce the aforementioned results has been verified after specialist review and field application.
Aerodynamic shape optimization is very useful for enhancing the performance of wind-sensitive structures. However, shape parameterization, as the first step in the pipeline of aerodynamic shape optimization, still heavily depends on empirical judgment. If not done properly, the resulting small design space may fail to cover many promising shapes, and hence hinder realizing the full potential of aerodynamic shape optimization. To this end, developing a novel shape parameterization scheme that can reflect real-world complexities while being simple enough for the subsequent optimization process is important. This study proposes a machine learning-based scheme that can automatically learn a low-dimensional latent representation of complex aerodynamic shapes for bluff-body wind-sensitive structures. The resulting latent representation (as design variables for aerodynamic shape optimization) is composed of both discrete and continuous variables, which are embedded in a hierarchy structure. In addition to being intuitive and interpretable, the mixed discrete and continuous variables with the hierarchy structure allow stakeholders to narrow the search space selectively based on their interests. As a proof-of-concept study, shape parameterization examples of tall building cross sections are used to demonstrate the promising features of the proposed scheme and guide future investigations on data-driven parameterization for aerodynamic shape optimization of wind-sensitive structures.
유비쿼터스 사회의 도래에 따라 교육의 패러다임도 변화되고 있다. 유비쿼터스 환경의 u-러닝에서는 휴대폰, PDA, PMP, UMPC, TPC 등의 모바일 기기가 중요한 학습도구가 될 것이다. 특히, 유비쿼터스 사회의 핵심 기술인 RFID를 모바일 기기와 함께 교수-학습에 활용한다면 의미있는 학습이 되기에 충분하다. 본 연구에서는 RFID를 교수-학습에 적용하기 위한 방안으로 RFID-card, RFID-book, RFID-label, RFID-test의 네 가지를 제시하였으며, RFID-label의 방법을 실제 교수-학습에 적용하고 그 가능성과 효과성을 탐색하였다. 그 결과 RFID의 교수-학습 적용에 대한 긍정적인 효과와 가능성을 얻었다. 하지만 RFID를 교수-학습에 적용함에 있어서 기술적으로 부족한 점이 나타났으며, RFID의 교수-학습 적용을 위한 모델의 지속적인 연구의 필요성이 제기되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.