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Abstract: Worker’s awkward postures and unreasonable physical load can be corrected by monitoring 

construction activities, thereby increasing the safety and productivity of construction workers and 

projects. However, manual identification is time-consuming and contains high human variance. In this 

regard, an automated activity recognition system based on inertial measurement unit can help in rapidly 

and precisely collecting motion data. With the acceleration data, the machine learning algorithm will be 

used to train classifiers for automatically categorizing activities. However, input acceleration data are 

extracted either from designed experiments or simple construction work in previous studies. Thus, 

collected data series are discontinuous and activity categories are insufficient for real construction 

circumstances. This study aims to collect acceleration data during long-term continuous work in a 

construction project and validate the feasibility of activity recognition algorithm with the continuous 

motion data. The data collection covers two different workers performing formwork at the same site. 

An accelerator, as well as portable camera, is attached to the worker during the entire working session 

for simultaneously recording motion data and working activity. The supervised machine learning-based 

models are trained to classify activity in hierarchical levels, which reaches a 96.9% testing accuracy of 

recognizing rest and work and 85.6% testing accuracy of identifying stationary, traveling, and rebar 

installation actions.  
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1. INTRODUCTION

Activity analysis is a technique for monitoring, recognizing, and assessing the activities of workers 

during ongoing projects(Thomas & Mathews, 1986). This technique has a great potential for improving 

construction productivity, as it efficiently measures the time spent on specific activities and identifies 

any issues that hinder labor productivity (Gouett, Haas, Goodrum, & Caldas, 2011). Activity analysis 

has been used to identify potential safety risks by combining with hazard assessment techniques, such 

as job hazard analysis (Rozenfeld, Sacks, Rosenfeld, & Baum, 2010). However, as this approach relies 

on manual observation, significant time and effort are required for data collection and analysis.  

Recent advancements in automation technologies in construction have provided considerable 

opportunity for measuring and tracking workers’ activities by using sensor data and analytics 

techniques, such as machine learning. In comparison with conventional observation methods, automated 

data collection and analysis for activities is not only time-saving and objective but also applicable to the 

collection of massive data from multiple workers. Among these sensors, wearable devices equipped 

with accelerometer are gaining attention, as they allow motion data collection (i.e., accelerations) 

without interfering with ongoing work. Recently, remarkable achievements on acceleration-based action 

recognition have been obtained using different wearable devices, such as single IMU sensor (Joshua & 

Varghese, 2014), smartphone (Akhavian & Behzadan, 2016), and wristband (Ryu, Seo, Jebelli, & Lee, 

2018). These studies have applied machine learning approaches to classify diverse predefined 

construction activities automatically on the basis of acceleration signals, which have reported high 

performance on classifying actions. Although these previous research efforts have tested the usage 

443



 

potential of IMU data (i.e., acceleration signals) for activity analysis, the applicability of these 

approaches in practice has not been fully tested, as they rely on the data collected from controlled 

experiments by repeating specific types of activities (Yan, Li, Li, & Zhang, 2017). The data collected 

during actual construction tasks are noisy and unstructured due to the dynamic nature of construction 

work. The movements of workers vary depending on site conditions even for same tasks, leading to 

potential errors in acceleration-based action recognition. Moreover, activity types are difficult to 

predefine in practice, as construction activities are unstandardized. Considering these remaining 

challenges, further investigation of these approaches in practice is required to improve the practical 

applicability of automated activity analysis using acceleration-based action recognition approaches.  

In this regard, the study attempts to validate acceleration-based action recognition protocol for field 

construction tasks with continuous data. In particular, a wristband (i.e., Apple Watch) was selected to 

collect acceleration data, as many construction activities are hand-dominant; thus, acceleration signals 

from a wristband efficiently represent dynamic activities involving complicated arm movements (Ryu 

et al., 2018). We collected acceleration data from two rebar workers by attaching an Apple Watch to 

their dominant hands during concrete formwork of a housing project in Hong Kong. Then, the collected 

data were used to test the performance of action recognition based on machine learning approaches. 

Potential issues when applying these approaches in practice were discussed on the basis of the results.  

2. LITERATURE REVIEW 

2.1. Monitoring human activity via sensors 

Activity analysis can evaluate and improve the safety (Chhokar & Wallin, 1984) and productivity 

(Haas, Borcherding, Allmon, & Goodrum, 1999) in construction. Previous practices mainly rely on 

safety supervisors to assess the behavior of workers manually; thus, the procedure is time-consuming 

(Hendrickson, Hendrickson, & Au, 1989) and subjective (Mattila, Hyttinen, & Rantanen, 1994). With 

the improvement of sensor technologies, video- and sensor-based approaches have been demonstrated 

feasible for monitoring construction workers. Vision-based approaches require the cooperation of the 

surveillance system and computer vision-based algorithms, which generate the models from videotapes 

for identifying posture and action types. Consequently, experts can assess worker health (Han & Lee, 

2013) and estimate productivity (Peddi, 2008) in an automatic and effective protocol. Risk assessment 

can also be accomplished through vision-based ergonomic analysis (Seo, Han, Lee, & Kim, 2015). 

Vision-based methodologies have not only gained abundant achievements in motion monitoring and 

analysis but also been proven to have a great potential in the construction domain. However, the 

application of vision-based approaches is limited by the construction environment. For instance, weak 

light condition and obstruction profoundly disturb the video quality, thereby declining the model 

performance (Seo et al., 2015). To address this limitation, researchers have developed various sensor-

based methods, such as location sensor-based and body-worn sensor approaches, for assessing 

construction workers’ activities (Ryu et al., 2018). The location sensor includes, but is not limited to, a 

global positioning system, radiofrequency identification, ultra-wide band, and wireless local area 

network, which allow the tracking of workers’ activities in the construction site (Aryan, 2011; Montaser 

& Moselhi, 2014; van Diggelen, 2002; Woo et al., 2011). However, the location information is 

insufficient for action recognition and posture assessment. On this basis, the body-worn sensor, 

particularly IMUs, has drawn attention and demonstrated its feasibility in acceleration data collection 

and action classification (Akhavian & Behzadan, 2016).  

2.2. Accelerometer-based action recognition research 

As a portable sensor for tracking triaxial acceleration signals, the accelerometer is widely embedded 

in wearable devices, which is a broadly used sensor in activities recognition due to the low cost, low 

energy-consuming and low interference (Lara & Labrador, 2012). Human action recognition divides the 

annotated signal streams into patterns and then extracts acceleration data into feature variables, which 

are set as the inputs of action classifiers (Chernbumroong, Atkins, & Yu, 2011). The high performances 

were reported on recognizing daily activities such as walking, jogging, sitting, and standing (Kwapisz, 

Weiss, & Moore, 2011; Ravi, Dandekar, Mysore, & Littman, 2005). Meanwhile, the successful 

application in construction comprises fall detection (Lim, Park, Lee, & Lee, 2015; Yang, Jebelli, Ahn, 

& Vuran, 2015) and activity classification (Joshua & Varghese, 2010).  
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The position for mounting the sensor is varied and significantly affects the analysis (Bao & Intille, 

2004). Attaching the accelerometer to the waist is a reasonable option because waist motion can 

represent the trend of body movement. Joshua and Varghese (2014) used a waist-worn acetometer to 

develop an acceleration-based classification protocol. The high performance of the scheme 

demonstrated that waist-mounted acceleration is suitable for action recognition. However, construction-

related action comprises several micromovements that are difficult to capture by waist acceleration, such 

as wrist and upper-limb movements. On this basis, researchers suggested attaching a wearable device 

equipped with accelerometer on dominant waist to track acceleration information. The feasibility has 

been proven in multiple publications (Chernbumroong et al., 2011; Koskimaki, Huikari, Siirtola, 

Laurinen, & Roning, 2009; Lara & Labrador, 2012; Ryu et al., 2018). Meanwhile, IMU embedded 

wristband-type device (e.g. smartwatch) is an idea device for collect hand movement in consistent 

position with little discomfort (Weiss, Timko, Gallagher, Yoneda, & Schreiber, 2016). Joshua and 

Varghese (2014) introduced IMU-based activity classification into the field and developed action 

identification models with the motion data collected from the waist and lower arms from carpentry and 

ironwork. As the prediction accuracies reached 90.07% and 77.74% for ironwork and carpentry, 

respectively, the study validated that wear-based activity analysis can be applied for field-collected 

acceleration data. However, several gaps existed in applying acceleration-based action identification in 

the construction site: 1) Previous studies removed the junction among the segments in the training 

material. While, the data collected from the site are supposed to be continuous and noisy. 2) Comparing 

with the action types conducted in instructed environment, the activity categories are more complex and 

diverse. 

3. METHODOLOGY  

This research aims to test a wearable accelerometer-based approach for automatically recognizing 

construction workers’ activity category on the basis of the continuous data collected from the field. This 

research focuses on rebar work, one of the most standard construction activities on the site, which 

consists of complex body activities and numerous micromovements in the wrist joint. To analyze the 

complicated acceleration signals captured from the IMU-embedded wearable sensors, multiple 

significant operations, such as optimizing the features, segment size, and training algorithms, are 

considered to achieve high performance. The training and validation procedure comprises the following 

steps: 1) collecting and labeling data, 2) segmenting data and extracting feature variables, 3) training 

classifiers, and 4) validating the model. 

3.1. Collecting and labeling data 

This project arranged a long-term data collection from multiple workers in two ongoing sites and 

constructed a large-scale database on continuous construction actions. During data collection, the 

participants were equipped with an Apple Watch in the dominant hand and a GoPro camera at the chest. 

With the self-developed WatchOS app, the Apple Watch can cumulatively read 3D inertial data, which 

are transferred to the laptop afterward. The GoPro camera was used to target the hands and record 

simultaneously for identifying the activity category. The Figure 1 shows the photos during filed data 

collection. Field data collection lasted 19 days in total, which finished in three collecting periods from 

November 2018 to March 2019. The project acquired around 498 h of videotapes and 2.83 billion 

acceleration sets from 18 different workers, including rebar, concrete, and form workers. Prior to the 

labeling of acceleration signals, data quality assessment was conducted to indicate the following failures 

of data collection: 1) Data capture failure. Participants took off equipment due to disturbance, and 

equipment stopped working due to misoperation or accidents. 2) Poor-quality videotapes. Videotapes 

could not provide the action information due to poor light conditions, and the chest-mounted camera 

could not record the wrist movement. 3) Data transmission or storage failure. To ensure the high quality 

of data, training and testing materials were constructed from two rebar workers’ acceleration signals 

collected on March 4, 5, and 8, which are strictly continuous and independent. 
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Figure 1. Site photos for data collection 

Table 1. Rebar activity taxonomy 

Activity 

Activity examples Level 

1 
Level 2 Level 3 

Break Stationary  Standing/Sitting Standing or Sitting 

Work 

Traveling  

Transportation 
Horizontal, vertical, included movement, jumping, skipping, 

going upstairs/downstairs, climbing up/down a ladder 

Transferring 

materials and tools 

Dynamical wrist movement while traveling, carrying materials 

and tools in horizontal, vertical, and inclined movement, 

carrying materials and tools while going upstairs or downstairs, 

climbing up or down a ladder 

Rebar 

installation 

Rebar preparation Cutting and bending 

Rebar placing Placing, adjusting, and lifting  

Rebar tying Fixing and tying 

Supplement work 
Irregular wrist movement, lifting materials and tools, squatting, 

standing up, rotating trunk 

Uncertain 

operation 
Action with unclear video recording 

 

The acceleration and video streams include the unique timestamps when recording, through which 

the inertial response can be synchronized with the predesigned action category (Table 1) on the basis of 

the videotapes. Considering the dynamic nature of construction work, the labeling procedure is 

challenging since the activities are transmitted too frequently to identify each pattern and the 
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transmission pattern. The error will be huge considering that thousands of junctions exist in the hours 

of data. Therefore, the junction between action patterns will be assigned the label of later patterns in the 

labeling procedure. As long as the activity is detected as changing, the assigned label will change 

correspondingly. The predefined taxonomy includes two divisions. The activity comprises exercises 

hierarchically from level 1 to level 3 with corresponding construction-related responses. Meanwhile, the 

activity examples refer to the basic movements that support identifying activities in ergonomic 

perspective. For instance, if the worker’s action is regarded as cutting rebar through the videotapes, the 

activity information could be concluded as rebar installation and rebar preparation in level 2 and level 3 

respectively. 

 

3.2. Segmenting data and extracting feature variables 

Considering the nature of human actions, continuous acceleration data should be divided into equal 

segments to represent the actions in a particular duration. This study used a sliding window approach to 

construct optimal action windows because the classification performance relies on the window size 

(Banos, Galvez, Damas, Pomares, & Rojas, 2014). Bonomi, Goris, Yin, and Westerterp (2009) 

demonstrated that a 6.4 s segment is the optimal window for classifying various motions, such as lying, 

sitting, standing, dynamic movement, walking, running, and cycling. The present study tested a diverse 

segment duration from 1 s to 6.5 s and selected the best performance model as the optimal classifier. 

Meanwhile, the data operating procedures included a 50% overlap when conducting the sliding window 

method, which was demonstrated as necessary in handling continuous motion signals (Bao & Intille, 

2004; Ryu et al., 2018).  

Labeled action patterns were extracted as feature variables on the basis of vital signal properties to 

distinguish activity patterns (Figo, Diniz, Ferreira, & Cardoso, 2010). Time- and frequency-domain 

features are the most widely used features for analyzing human actions (Preece et al., 2009). Time-

domain features include, but are not limited to, mean value, maximum value, median, and variance, 

which reveal the statistical characteristics of the motion signals (Bao & Intille, 2004). Meanwhile, 

frequency-domain features, such as energy and entropy, measure the acceleration streams in the 

perspective of frequency by utilizing fast Fourier transform and are frequently utilized to evaluate action 

complexity in acceleration-based activity analysis (Preece et al., 2009). Ten broadly used significant 

features variables (Ryu et al., 2018) are employed, which covers eight time-domain features and two 

frequency-domain features (Table). 

 

Table 2. List of feature variables 

Feature type Feature variable (including x, y, and z axes) 

Frequency-domain features 
Entropy  

Energy  

Time-domain features 

Mean value  

Skewness  

Maximum value  

Minimum value  

Range  

Standard deviation  

Kurtosis  

Correlation between two axes 

 

3.3. Training classifiers and validation 

This study used supervised machine learning methods to train the pre-labeled feature variables and 

generated classifiers for automatically identifying workers’ action division. With the Classification 

Learner app in MATLAB (2019a, MathWorks), a platform implementing several classification training 

schemes, training and assessment were conducted productively. On the basis of the assessment, three 
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classifiers generate the highest identification rate, namely, 1) ensemble bagged trees (Dietterich, 2000), 

2) support vector machine (SVM) (Hsu & Lin, 2002), and 3) k-nearest neighbor (kNN) (Sutton, 2012).  

The validation involves testing the model prediction performance with additional data. The two 

typical evaluating schemes are n-fold cross-validation and holdout validation. In n-fold cross-validation, 

the entire dataset is initially randomly split into equal-size subsets, one subset of which is the testing set 

and the rest of the (n-1) subsets are set as a training set. Each trail generates a classifier from training 

data. The prediction accuracy is the correct prediction rate by inputting the test data in the trained 

classifier. The n-fold cross-validation adopts an overall accuracy after being run over all the test datasets, 

which means n times in total (Kohavi, 1995). Holdout validation is another assessment protocol for 

large-scale data. The algorithms randomly extract a specific part (held-out percentage) of data as test 

dataset and trains the model with the rest of the data. The performance is evaluated by the test data, and 

the algorithm trains all data to obtain the final model. The overall accuracy is also calculated by the 

correct prediction rate, and all data train the generated classifier.  

The overall prediction accuracy is an indicator for simultaneously measuring the model performance 

for all categories, which however cannot measure incorrect prediction cases among the categories. 

Therefore, the confusion matrix is introduced as the supplemental approach for quantifying the difficulty 

of distinguishing one category from another class of actions. The validation provides significant 

indications to adjust the window size, modify the category library, and promote the algorithms. 

4. TESTING RESULTS 

Part of continuous data period with high quality was selected as analysis objective in the study due to 

the low quality of raw data. The dataset consisted of the action data from two different rebar workers in 

three different working periods, lasting for 13.6 h and with 145,688 sets of data. Multiple data sessions 

were individually extracted as features, which would be combined as comprehensive dataset. For test 

demand, a period of around 1 h was randomly extracted as the test dataset. The training dataset contained 

the rest of the datasets. On the basis of different category levels, the testing procedure covered three 

classifiers. Classifier 1 was for recognizing activity level to classify ineffective and effective work; 

classifier 2 was for distinguishing stationary, traveling, and immobile working actions; and classifier 3 

was for identifying basic task actions. The training procedure ran multiple training models with various 

window sizes. A 10% held-out validation measured the performance of each trained model. The training 

and testing results were presented in Table 3 to Table 5. 

Table 3. Confusion matrix of Classifier 1 (best) with 0.5 s window size  

Level 1 Activity     

Classifier: Ensemble bagged trees  

Work Work Break Recall 

Work 26177 177 99.3% 

Break 419 9649 95.8% 

Precision  98.4% 98.2%  

*Training accuracy: 98.4% Test accuracy: 96.9% 

Table 4. Confusion matrix of Classifier 2 (best) with 0.5 s window size  

Level 2 Activity     

Classifier: Ensemble bagged trees 

Work Rebar installation Traveling Stationary Recall 

Rebar installation 7301 302 49 95.4% 

Traveling  946 1925 16 66.7% 

Stationary 120 18 3891 96.6% 

Precision  87.3% 85.7% 98.4%  
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*Training accuracy: 90.0%  Test accuracy: 85.6% 

Table 5. Confusion matrix of Classifier 3 (best) with 0.5 s window size  

Level 3 Activity          

Classifier: Ensemble bagged trees 

Work A B C D E F G H Recall 

A = Uncertain operation 0 3 0 0 0 0 3 1 0.0% 

B = Supplement work 1 1966 264 61 52 13 324 74 71.4% 

C = Rebar tying 0 387 1416 52 55 0 108 48 68.5% 

D = Rebar placing 0 165 72 946 14 2 28 6 76.7% 

E = Rebar preparation 0 185 72 16 1125 2 115 21 73.2% 

F = Transferring materials 

and tools 

0 131 31 8 7 46 168 7 11.6% 

G = Transportation 0 396 111 9 26 13 1911 20 76.9% 

H = Standing/sitting 0 59 14 0 7 1 11 3995 97.7% 

Precision 0.0% 59.7% 71.5% 86.6% 87.5% 59.7% 71.6% 95.8%  

*Training accuracy: 78.3% Test accuracy: 55.9% 

5. DISCUSSIONS 

The result shows that ensemble bagged tree has the best performance with an optimal window size of 

0.5 s for each classifier. Previous research (Ryu et al., 2018) stated that a large window size generates 

high performance, which is contrast to the present case. One of the possible reasons is that the basic task 

level actions occur rapidly in the real construction site. For example, in rebar work, the worker typically 

bends rebar for 2 s and conducts supplement work, such as lifting, in the following second. Therefore, 

a small window size can help in efficiently distinguishing the categories under extensive situations. 

Table 3 indicates the high performance in recognizing break and work for rebar task. The training and 

testing accuracies are 98.4% and 96.9%, respectively. Thus, the trained classifier has a 96.9% possibility 

of correctly detecting break and work with the testing data. Meanwhile, the recall and precision ratio for 

the individual category is over 95%. Therefore, Classifier 1 can be an objective and efficient tool for 

measuring the resting time and working duration in the field. 

Table 4 shows the validation results for Classifier 2, i.e., stationary, traveling, and rebar installation 

activities. The overall training and test accuracies reach 90.0% and 85.6%, respectively, thereby 

validating the feasibility of using the model in field situation to recognize whether the worker is standing 

and sitting for rest, traveling in the site, or installing the rebar. However, the confusion matrix in Table 

4 indicates that 33.3% of traveling activity cannot be correctly predicted as traveling, which is 

unacceptable in field application. The main confusion is observed in the traveling and rebar installation 

categories, which means that several small movements exist when working at the certain spot. Either 

the algorithm does not detect micro-traveling or the actions are not appropriately annotated.  

Table 5 shows the performance of Classifier 3 for rebar activities. The overall accuracy for Classifier 

3 is 78.3% with a test accuracy of 55.9%, which are relative lower than the application threshold. 

Meanwhile, the confusion matrix indicates that the categories of rebar tying and transferring materials 

and tools have misprediction rates of 31.5% and 88.4%, respectively. The detection errors are mainly 

caused by supplement work. Hence, supplement work comprises numerous activities similar to other 

activities. Other reasons for the poor performance include the following: 1) The camera cannot capture 

the minimal rest or hand movement during rebar work; thus, distinguishing different categories is 

difficult in the data labeling stage. 2) The window size is too small to remove the noise from the junction 

that frequently occurs during work. 3) The uncertain movement category consists of numerous 

observations, which induce certain confusions when recognizing activities. 
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6. CONCLUSIONS 

This study collects strictly continuous data from the construction site to validate the feasibility of 

action recognition algorithm and generate the classification model in the activity and action levels for 

rebar work. The activity indicates the construction nature of movement and the action related to motion 

features of elemental exercise. The activity includes three levels of category. Level 1 activity includes 

rest and work and determines the objective productivity by detecting whether the workers are working 

or resting. The results show that the testing accuracy of current classifiers reaches 96.9%. Thus, 

Classifier 1 can efficiently classify work and rest with external data from other rebar workers in filed 

situations and meets the demand for detect low productivity issue in the field. Level 2 activity has 

acceptable overall accuracy for classifying stationary, traveling, and rebar installation. The training and 

test accuracies in this level are 90.0% and 85.6%, respectively. Stationary action includes standing and 

sitting in the jobsite. Traveling covers activities with changing position in the site, such as walking and 

transferring materials. Rebar installation refers to activities at a constant position, such as bending and 

cutting rebars at a stable spot. Level 3 activity for rebar work has a 78.3% overall training accuracy and 

55.9% test accuracy. The classifications of supplement work and rebar installation can evaluate the 

contribution on core construction work, which can help managers assign skilled and experienced 

workers to critical procedures, such as the rebar installation. Consequently, productivity will be 

improved. 

Level 1 and level 2 activities have acceptable performance and can provide valuable information to 

meet the demands of managers and workers. Level 3 activity and action level classifier are unsuitable 

for field application due to poor performance. The misclassification between categories is high and is 

caused by the confusion between traveling and rebar installation activities, since minimal and short-

duration movements exist during work.  

The current result demonstrates the feasibility of applying the proposed action recognition protocol 

in filed construction. In this regard, the construction action would be classified instantly during the site 

work, which helps manager detect the low productivity activity efficiently, such as long time resting or 

traveling. As a result, the project procedure could be corrected in the perspective of productivity. Filed 

data collection is the most challenging part. The dataset employed in this study is still limited, 1) few 

workers’ acceleration information are included, which is not able to eliminate the human variance; 2) 

this study only discuss the rebar work, which is not adequate for checking field project productivity. 

The future work will expand the dataset by adding data collected from additional workers to reduce the 

human variance. To remove the junction noise in continuous work, data processing methods will be 

adopted. For instance, post-processing is an ideal method for removing prediction class accidentally 

appearing in a series of continuous data. Meanwhile, additional machine learning-based algorithms, such 

as deep learning-based methods, will be validated. The present result indicates that a short window size 

contributes to a high overall result, whereas a large window size reduces the internal misclassification 

error among the categories. A trade-off will be discussed to balance overall and internal performances. 
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