• Title/Summary/Keyword: Continuous flow system

Search Result 505, Processing Time 0.028 seconds

Evaluation of Pumping Characteristics of High Strength Concrete using Continuous Pumping System

  • Kwon, Dae-Hun;Lee, Han-Seung;Jeon, Jun-Young;Jeong, Woong-Taek;Jo, Ho-Kyoo;Kim, Hyung-Rae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.4
    • /
    • pp.387-395
    • /
    • 2011
  • In the construction of tall-building, concrete pumping influences the success of the project. In order to establish pumping technology for high speed construction of tall building, study for quantitative evaluation of flow characteristics and pumpability should be conducted. So in this study, the characteristics including the inner pipe pressure, rheological properties of concrete and mortar through the continuous pumping test were evaluated. Then we analyzed the relations between rheological properties and pumpability. In the result of test, there are high correlations between the rheological characteristics which represented by yield stress and plastic viscosity and pressure loss with pipe length. Also, we estimated pressure loss according to conditions of concrete mix and pumping through the evaluation of inner pipe friction.

HYDRODYNAMIC SOLVER FOR A TRANSIENT, TWO-FLUID, THREE-FIELD MODEL ON UNSTRUCTURED GRIDS (비정렬격자계에서 과도 이상유동해석을 위한 수치해법)

  • Jeong, J.J.;Yoon, H.Y.;Kim, J.;Park, I.K.;Cho, H.K.
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.44-53
    • /
    • 2007
  • A three-dimensional (3D) unstructured hydrodynamic solver for transient two-phase flows has been developed for a 3D component of a nuclear system code and a component-scale analysis tool. A two-fluid three-field model is used for the two-phase flows. The three fields represent a continuous liquid, an entrained liquid, and a vapour field. An unstructured grid is adopted for realistic simulations of the flows in a complicated geometry. The semi-implicit ICE (Implicit Continuous-fluid Eulerian) numerical scheme has been applied to the unstructured non-staggered grid. This paper presents the numerical method and the preliminary results of the calculations. The results show that the modified numerical scheme is robust and predicts the phase change and the flow transitions due to boiling and flashing very well.

Comparison of Improving Dewatering Process at Clay-Sandy Soil based on Pulse-Electrokinetic Technology and Continuous-Electrokinetic Technology (펄스동전기법과 연속처리동전기법을 이용한 점토성-사질토의 탈수화 효율 비교)

  • Shin, Sanghee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.4
    • /
    • pp.37-41
    • /
    • 2014
  • Pulse electrokinetic technology is proposed for improving the dewatering-process from clay-sandy soil. Proposed electrokinetic technology is to be the dewatering process due to fluid movement of current flow for the stability of clay-sandy soils. Samples produced in this study were completed to verify the proposed performance for 7 days by gradually increasing the pressure to the final pressure of 30 psi ($2.11kgf/cm^2$) through the compression process. In this study, pulse electrokinetic treatment and conventional continuous electrokinetic treatment are tested and observed, respectively. The condition of continuous electrokinetic treatment is a continuous process during 48 hours. And the condition of pulse electrokinetic treatment system is to interrupt the power three times for 48 hours, every 8 hours. These treatments are that the voltage gradient is 3 V/cm. As a result, the efficiency of pulse electrokinetic is similar to the continuous electrokinetic. The power consumption efficiency of pulse electrokinetic is better than continuous electrokinetic.

System Modeling for Operating Efficiency Analysis of Photovoltaics (태양광발전의 운용효율분석을 위한 시스템 모델링)

  • 최연옥;조금배;백형래;정헌상;이만근;정명웅
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.380-385
    • /
    • 1997
  • The primary concern in designing any PV system is the determination of its optimum size. It is generally inadequate to use monthly or daily average insolation, and estimated number of continuous no sun days to determine array and battery capacities because the dynamic behavior of PV system and the stochastic nature of solar radiation also significantly influence the required array and storage capacity. Simulation method uses hourly meterological data and hourly load data to simulate the energy flow in a PV system, and predicts the system reliabilities under assumed array and battery sizes. Stand alone system for operating efficiency analysis of Photovoltaics system were discribed in this paper.

  • PDF

A System Dynamics Approach to the Electronic Commerce and Its Implication

  • Jaeho Juhn;Kim, Doa-Hoon
    • Proceedings of the Korean System Dynamics Society
    • /
    • 2000.02a
    • /
    • pp.29-37
    • /
    • 2000
  • In this paper an attempt is made to understand contribution factors in the field of electronic commerce(EC). To do that, we adopt and modify an existing commerce model. The following two major conclusions are drawn from our simulation. Most of all, the diminution of information delay introduce monotonous growth rather than fluctuation of EC market. The stable increase of revenue or market scale makes us decide the employment or capacity scale quickly. Second, for favorable and continuous evolution of EC, utilization system of electronic money should be established steadily. The following findings strongly support our claim: We found full oscillation of EC market when electronic money system didn't established well. On the contrary, if electronic money system could provide fast cash flow and fully trustful function, decisions of company or consumer would be executed promptly.

  • PDF

Utilization of Element-doping Titania-impregnated Granular Activated Carbon in a Plug-flow System for Removal of BTEX

  • Jo, Wan-Kuen;Shin, Seung-Ho;Hwang, Eun-Song;Yang, Sung-Bong
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.3
    • /
    • pp.177-188
    • /
    • 2010
  • The use of an activated carbon (AC) system alone has the limitation that the pollutants are not eliminated but only transferred to another phase with the consumed AC becoming hazardous waste itself. Therefore, the present study investigated the feasibility of using a combined system of granular AC (GAC) with S-doped visible-light-induced $TiO_2$ (GAC/S-doped $TiO_2$) to clean monocyclic aromatic hydrocarbons (MAHs) with concentrations at $\leq$ 3 mg $m^{-3}$, using a continuous air-flow reactor. This study conducted three different experiments: an adsorption test of pure GAC and GAC/S-doped $TiO_2$; a long-term adsorptional photocatalytic (AP) activity test of GAC/S-doped $TiO_2$; and an AP activity test of GAC/S-doped $TiO_2$ under different conditions. For the AP activity test, three parameters were evaluated: various weights of GAC/S-doped $TiO_2$ (0.9, 4.4, and 8.9 g); various flow rates (FRs) (0.5, 1 and 2 L $min^{-1}$); and various input concentrations (ICs) of the target MAHs (0.1, 1, 2 and 3 mg $m^{-3}$). The adsorption efficiencies were similar for the pure GAC and GAC/S-doped $TiO_2$ reactors, suggesting that S-doped $TiO_2$ particles on GAC surfaces do not significantly interfere with the adsorption capacity of GAC. Benzene exhibited a clear AP activity, whereas no other target MAHs did. In most cases, the AP efficiencies for the target MAHs did not significantly vary with an increase in weight, thereby suggesting that, under the weight range tested in this study, the weights or FRs are not important parameters for AP efficiency. However, ICs did influence the AP efficiencies.

Analysis of the Aluminum Extrusion Process Equipped with the Continuous Heat Treatment System

  • Lee, Bong-Sang;Cho, Young-Hee;Lee, Jeong-Min;Lim, Hak-Jin;Koo, Jar-Myung;Yoon, Bo-Hee;Lee, Tae-Hyuk;Lee, Jong-Hyeon
    • Korean Journal of Materials Research
    • /
    • v.21 no.1
    • /
    • pp.39-45
    • /
    • 2011
  • In this study, the heat flow of the plant scale aluminum extrusion process was investigated to establish optimum continuous heat treatment conditions. During the extrusion of 6061 aluminum alloy, processing parameters such as the extrusion pressure, speed and temperature histories of billets were logged as a function of time. The surface temperature of the billets increased at constant ram speed, while it decreased with decreases of the ram speed. In order to maintain the billet temperature within a solutionizing temperature range prior to the succeeding water quenching step, the ram speed or the temperature of the blower should be controlled. The temperature histories of the billets during the extrusion and hot air blowing processes were successfully simulated by using the velocity boundary model in ANSYS CFX. The methodology to design an optimum process by using a commercial simulation program is described in this study on the basis of the metallurgical validation results of the microstructural observation of the extrudates. The developed model allowed the advantages of taking into account the motion of the extrudate coupled with the temperature change based on empirical data. Calculations were made for the extrudate passing through the isothermal chamber maintained at appropriate temperature. It was confirmed that the continuous heat treatment system is beneficial to the productivity enhancement of the commercial aluminum extrusion industry.

Sterilization of Gochujang Sauce with Continuous Ohmic Hea (연속 옴가열 장치를 이용한 고추장 소스의 살균)

  • Choi, Jun-Bong;Cho, Won-Il;Jung, Jung-Yoon;Chung, Myong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.474-479
    • /
    • 2015
  • In this study, five different Gochujang (a traditional Korean sauce prepared using fermented red pepper paste) sauces were heated at $100^{\circ}C$ for 5 min using a continuous ohmic heating system. Ohmic heating yielded greater reduction in microbial counts (90-95% reduction) than did conventional heating (65-75% reduction). The sterilization effect of the continuous ohmic heater increased with increasing sample flow rate and decreasing Reynolds number inside the pipe. Low-viscosity samples had higher electrical conductivity and were better suited for ohmic heating than were high-viscosity samples. The color and texture were also satisfactorily maintained after ohmic heating. Compared with conventional heating, ohmic heating provided rapid and uniform heating, which is more suitable for aseptic thermal processing of viscous foods.

Studies on Whole Cell Immobilized Glucose Isomerase - II. Operational Studies on the Batchwise and Continuous Isomerization of D-Glucose - (포도당 이성화 효소의 세포 고정화에 관한 연구 - 제 2 보 : 회분식 및 연속 반응조를 사용한 포도당의 이성화 -)

  • Ahn, Byung-Yoon;Byun, Si-Myung
    • Korean Journal of Food Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.249-257
    • /
    • 1979
  • Using the whole cell immobilized glucose isomerase which was prepared in the previous work (Korean J. Food Sci. & Technol., 11(3), 192 (1979), the specific activity of the immobilized enzyme was 48.1 units in the batch reaction system and 114 units in the continuous reaction system per g of matrix, respectively. In the continuous reactor the voidity was 0.36, which was suitable for the packed bed reactor. This immobilized enzyme showed a good operational stability of 115 days of half life which was sufficient for the continuous operation. The experimental result showed that 55 % of the substrate was converted to the product in the packed bed reactor. The productivity was dependent on the flow rate, column geometry, enzyme loading, and substrate concentration. An intrapaticle diffusion was observed by the effectiveness factor of 0.75 and interparticle diffusion by the decrease of Km' with increasing the superficial velocity.

  • PDF

Use of laminar flow water storage tank (LFWS) to mitigate the membrane fouling for reuse of wastewater from wafer processes

  • Sun, Darren Delai;Wu, You
    • Membrane and Water Treatment
    • /
    • v.3 no.4
    • /
    • pp.221-230
    • /
    • 2012
  • This study employed the modified fouling index (MFI) to determine the performance of a two-step recycling system - a membrane filtration integrated laminar flow water storage (LFWS) tank followed by an ion exchange process to reclaim ultrapure water (UPW) from the wastewater generated from semiconductor wafer backgrinding and sawing processes. The first step consisted of the utilization of either ultrafiltration (UF) or nanofiltration (NF) membranes to remove solids in the wastewater where the second step consisted of an ion exchanger to further purify the filtrate. The system was able to produce high purity water in a continuous operating mode. However, higher recycling cost could be incurred due to membrane fouling. The feed wastewater used for this study contained high concentration of fine particles with low organic and ionic contents, hence membrane fouling was mainly attributed to particulate deposition and cake formation. Based on the MFI results, a LFWS tank that was equipped with a turbulence reducer with a pair of auto-valves was developed and found effective in minimizing fouling by discharging concentrated wastewater prior to any membrane filtration. By comparing flux behaviors of the improved system with the conventional system, the former maintained a high flux than the latter at the end of the experiment.