• Title/Summary/Keyword: Continuous Variable

Search Result 750, Processing Time 0.022 seconds

Variable selection and prediction performance of penalized two-part regression with community-based crime data application

  • Seong-Tae Kim;Man Sik Park
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.4
    • /
    • pp.441-457
    • /
    • 2024
  • Semicontinuous data are characterized by a mixture of a point probability mass at zero and a continuous distribution of positive values. This type of data is often modeled using a two-part model where the first part models the probability of dichotomous outcomes -zero or positive- and the second part models the distribution of positive values. Despite the two-part model's popularity, variable selection in this model has not been fully addressed, especially, in high dimensional data. The objective of this study is to investigate variable selection and prediction performance of penalized regression methods in two-part models. The performance of the selected techniques in the two-part model is evaluated via simulation studies. Our findings show that LASSO and ENET tend to select more predictors in the model than SCAD and MCP. Consequently, MCP and SCAD outperform LASSO and ENET for β-specificity, and LASSO and ENET perform better than MCP and SCAD with respect to the mean squared error. We find similar results when applying the penalized regression methods to the prediction of crime incidents using community-based data.

Numerical and statistical analysis of Newtonian/non-Newtonian traits of MoS2-C2H6O2 nanofluids with variable fluid properties

  • Manoj C Kumar;Jasmine A Benazir
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.341-352
    • /
    • 2024
  • This study investigates the heat and mass transfer characteristics of a MoS2 nanoparticle suspension in ethylene glycol over a porous stretching sheet. MoS2 nanoparticles are known for their exceptional thermal and chemical stability which makes it convenient for enhancing the energy and mass transport properties of base fluids. Ethylene glycol, a common coolant in various industrial applications is utilized as the suspending medium due to its superior heat transfer properties. The effects of variable thermal conductivity, variable mass diffusivity, thermal radiation and thermophoresis which are crucial parameters in affecting the transport phenomena of nanofluids are taken into consideration. The governing partial differential equations representing the conservation of momentum, energy, and concentration are reduced to a set of nonlinear ordinary differential equations using appropriate similarity transformations. R software and MATLAB-bvp5c are used to compute the solutions. The impact of key parameters, including the nanoparticle volume fraction, magnetic field, Prandtl number, and thermophoresis parameter on the flow, heat and mass transfer rates is systematically examined. The study reveals that the presence of MoS2 nanoparticles curbs the friction between the fluid and the solid boundary. Moreover, the variable thermal conductivity controls the rate of heat transfer and variable mass diffusivity regulates the rate of mass transfer. The numerical and statistical results computed are mutually justified via tables. The results obtained from this investigation provide valuable insights into the design and optimization of systems involving nanofluid-based heat and mass transfer processes, such as solar collectors, chemical reactors, and heat exchangers. Furthermore, the findings contribute to a deeper understanding of stretching sheet systems, such as in manufacturing processes involving continuous casting or polymer film production. The incorporation of MoS2-C2H6O2 nanofluids can potentially optimize temperature distribution and fluid dynamics.

Estimation using informative sampling technique when response rate follows exponential function of variable of interest (응답률이 관심변수의 지수함수를 따를 경우 정보적 표본설계 기법을 이용한 모수추정)

  • Chung, Hee Young;Shin, Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.6
    • /
    • pp.993-1004
    • /
    • 2017
  • A stratified sampling method is generally used with a sample selected using the same sample weight in each stratum in order to improve the accuracy of the sampling survey estimation. However, the weight should be adjusted to reflect the response rate if the response rate is affected by the value of the variable of interest. It may be also more effective to adjust the weights by subdividing the stratum rather than using the same weight if the variable of interest has a linear relationship with the continuous auxiliary variables. In this study, we propose a method to increase the accuracy of estimation using an informative sampling design technique when the response rate is an exponential function of the variable of interest and the variable of interest has a linear relationship with the auxiliary variable. Simulation results show the superiority of the proposed method.

Case Study on the 6th Graders' Understanding of Concepts of Variable (초등학교 6학년 학생들의 변수 개념 이해에 관한 사례 연구)

  • Ha, Su-Hyun;Lee, Gwang-Ho
    • The Mathematical Education
    • /
    • v.50 no.2
    • /
    • pp.213-231
    • /
    • 2011
  • The purpose of this study is to analyze the 6th graders' understanding of the concepts of variable on various aspects of school algebra. For this purpose, the test of concepts of variable targeting a sixth-grade class was conducted and then two students were selected for in-depth interview. The level of mathematics achievement of the two students was not significantly different but there were differences between them in terms of understanding about the concepts of variable. The results obtained in this study are as follows: First, the students had little basic understanding of the variables and they had many cognitive difficulties with respect to the variables. Second, the students were familiar with only the symbol '${\Box}$' not the other letters nor symbols. Third, students comprehended the variable as generalizers imperfectly. Fourth, the students' skill of operations between letters was below expectations and there was the student who omitted the mathematical sign in letter expressions including the mathematical sign such as x+3. Fifth, the students lacked the ability to reason the patterns inductively and symbolize them using variables. Sixth, in connection with the variables in functional relationships, the students were more familiar with the potential and discrete variation than practical and continuous variation. On the basis of the results, this study gives several implications related to the early algebra education, especially the teaching methods of variables.

Eigenstructure Assignment Control for Linear Continuous-Time Systems with Probabilistic Uncertainties (확률적 불확실성을 갖는 선형 연속 시간 시스템의 고유구조 지정제어)

  • 서영봉;최재원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.145-152
    • /
    • 2004
  • In this paper, an S(stochastic)-eigenvalue and its corresponding S-eigenvector concept for linear continuous-time systems with probabilistic uncertainties are proposed. The proposed concept is concerned with the perturbation of eigenvalues due to the stochastic variable parameters in the dynamic model of a plant. An S-eigenstructure assignment scheme via the Sylvester equation approach based on the S-eigenvalue/-eigenvector concept is also proposed. The proposed control design scheme based on the proposed concept is applied to a longitudinal dynamics of an open-loop-unstable aircraft with possible uncertainties in aerodynamic and thrust effects as well as separate dynamic pressure effects. These results explicitly characterize how S-eigenvalues in the complex plane may impose stability on the system.

Investigation of two parallel lengthwise cracks in an inhomogeneous beam of varying thickness

  • Rizov, Victor I.
    • Coupled systems mechanics
    • /
    • v.9 no.4
    • /
    • pp.381-396
    • /
    • 2020
  • Analytical investigation of the fracture of inhomogeneous beam with two parallel lengthwise cracks is performed. The thickness of the beam varies continuously along the beam length. The beam is loaded in three-point bending. Two beam configurations with different lengths of the cracks are analyzed. The two cracks are located arbitrary along the thickness of the beam. Solutions to the strain energy release rate are derived assuming that the material has non-linear elastic mechanical behavior. Besides, the beam exhibits continuous material inhomogeneity along its thickness. The balance of the energy is analyzed in order to derive the strain energy release rate. Verifications of the solutions are carried-out by considering the complementary strain energy stored in the beam configurations. The influence of the continuous variation of the thickness along the beam length on the lengthwise fracture behavior is investigated. The dependence of the lengthwise fracture on the lengths of the two parallel cracks is also studied.

A Real Code Genetic Algorithm for Optimum Design (실수형 Genetic Algorithm에 의한 최적 설계)

  • 양영순;김기화
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.187-194
    • /
    • 1995
  • Traditional genetic algorithms(GA) have mostly used binary code for representing design variable. The binary code GA has many difficulties to solve optimization problems with continuous design variables because of its targe computer core memory size, inefficiency of its computing time, and its bad performance on local search. In this paper, a real code GA is proposed for dealing with the above problems. So, new crossover and mutation processes of read code GA are developed to use continuous design variables directly. The results of real code GA are compared with those of binary code GA for several single and multiple objective optimization problems. As results of comparisons, it is found that the performance of the real code GA is better than that of the binary code GA, and concluded that the rent code GA developed here can be used for the general optimization problem.

  • PDF

Improvement of Semicontinuous Hiden Markov Models and One-Pass Algorithm for Recognition of Keywords in Korean Continuous Speech (한국어 연속음성중 키워드 인식을 위한 반연속 은닉 마코브 모델과 One-Pass 알고리즘의 개선방안)

  • 최관선
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06c
    • /
    • pp.358-363
    • /
    • 1994
  • This paper presents the improvement of the SCHMM using discrete VQ and One-Pass algorithm for keywords recognition in Korean continuous speech. The SCHMM using discrete VQ is a simple model that is composed of a variable mixture gaussian probability density function with dynamic mixture number. One-Pass algorithm is improved such that recognition rates are enhanced by fathoming any undesirable semisyllable with the low likelihood and the high duration penalty, and computation time is reduced by testing only the frame which is dissimilar to the previously testd frame. In recognition experiments for speaker-dependent case, the improved One-Pass algorithm has shown recognition rates as high as 99.7% and has reduced compution time by about 30% compared with the currently abailable one-pass algorithm.

  • PDF

Identification of continuous time-delay systems using the genetic algorithm

  • Hachino, Tomohiro;Yang, Zi-Jiang;Tsuji, Teruo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.1-6
    • /
    • 1993
  • This report proposes a novel method of identification of continuous time-delay systems from sampled input-output data. By the aid of a digital pre-filter, an approximated discrete-time estimation model is first derived, in which the system parameters remain in their original form and the time delay need not be an integral multiple of th sampling period. Then an identification method combining the common linear least squares(LS) method or the instrumental variable(IV) method with the genetic algorithm(GA) is proposed. That is, the time-delay is selected by the GA, and the system parameters are estimated by the LS or IV method. Furthermore, the proposed method is extended to the case of multi-input multi-output systems where the time-delays in the individual input channels may differ each other. Simulation resutls show that our method yields consistent estimates even in the presence of high measurement noises.

  • PDF

SUBSTITUTION OPERATORS IN THE SPACES OF FUNCTIONS OF BOUNDED VARIATION BV2α(I)

  • Aziz, Wadie;Guerrero, Jose Atilio;Merentes, Nelson
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.649-659
    • /
    • 2015
  • The space $BV^2_{\alpha}(I)$ of all the real functions defined on interval $I=[a,b]{\subset}\mathbb{R}$, which are of bounded second ${\alpha}$-variation (in the sense De la Vall$\acute{e}$ Poussin) on I forms a Banach space. In this space we define an operator of substitution H generated by a function $h:I{\times}\mathbb{R}{\rightarrow}\mathbb{R}$, and prove, in particular, that if H maps $BV^2_{\alpha}(I)$ into itself and is globally Lipschitz or uniformly continuous, then h is an affine function with respect to the second variable.