• 제목/요약/키워드: Content-based Image retrieval

검색결과 448건 처리시간 0.02초

색상 및 형태 정보를 이용한 클러스터링 기반의 효과적인 이미지 검색 기법 (An Efficient Clustering Based Image Retrieval using Color and Shape features)

  • 이근섭;조정원;최병욱
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 제13회 신호처리 합동 학술대회 논문집
    • /
    • pp.363-366
    • /
    • 2000
  • 이미지의 한가지 특징(feature)만을 고려한 내용 기반 이미지 검색(content-based image retrieval)은 두가지 이상의 특징 정보를 사용했을 경우와 비교하여 정확도(precision)가 떨어져 성능을 저하시킬 수 있다 따라서 대부분의 검색 시스템에서는 색상(color)이나 형태(shape), 질감(texture) 등과 같은 이미지의 다양한 특징들을 결합하여 검색에 이용하고 있다. 본 논문에서는 이미지의 색상 및 형태 정보를 이용하여 사용자의 질의와 유사한 이미지를 제공하고, 고 차원화된 이미지의 특징들을 클러스터링(clustering) 방법을 이용하여 빠르게 검색할 수 있도록 하였으며, 또한 검색시 그룹 경계 보정 방법을 이용하여 전체 검색을 하지 않고도 전체검색 결과와 동일한 결과를 얻을 수 있는 시스템을 설계 및 구현하였다. 실험에 사용된 데이터는 2022개의 자연 영상이였으며, HSI 색상 정보와 이미지의 에지(edge) 정보를 특징 벡터로 삼았다. 실험 결과, 색상 정보 하나만을 사용한 경우보다 정확도와 재현율면에서 사용자가 원하는 이미지와 보다 유사한 결과를 검출할 수 있었을 뿐만 아니라 클러스터링을 사용함으로써 보다 빠르고, 전체검색 결과와 동일한 검색이 가능하다는 것을 입증하였다.

  • PDF

히스토그램 영역계산을 이용한 내용기반 영상검색 (Content-Based Image Retrieval using Histogram Area Calculation)

  • 박민식;유기형;곽훈성
    • 한국컴퓨터산업학회논문지
    • /
    • 제6권2호
    • /
    • pp.265-270
    • /
    • 2005
  • 히스토그램은 컬러공간의 특징 때문에 조명에 매우 민감하며, 이동된 빛의 강도를 가지고 있을때 유사성을 떨어뜨릴 가능성이 커지기 때문에, 본 논문에서는 히스토그램의 영역을 몇 개의 영역으로, 나눠, 그 영역들을 계산하는 HAC(Histogram Area Calculation)라 불리는 새로운 검색 방법을 소개한다. 제안한 방식은 현재 히스토그램이 가지고 있는 특성에 기반하여 히스토그램의 영역을 계산하고, 유사성을 매칭시킴으로써 명암도 변화에 대해서, 기존의 다른 전통적인 히스토그램 방법이나, 병합된 히스토그램 방법보다 제안한 방식의 성능이 훨씬 뛰어나다는 것을 보여준다.

  • PDF

효율적인 이미지 분할을 위한 RGB 채널 선택 기법 (RGB Channel Selection Technique for Efficient Image Segmentation)

  • 김현종;박영배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권10호
    • /
    • pp.1332-1344
    • /
    • 2004
  • 최근 초고속 통신망 및 멀티미디어 관련기술의 발달로 인해 멀티미디어 데이타를 좀 더 효율적으로 전송하고 저장, 검색하는 기술이 요구되고 있다. 그 중에서 의미 기반 영상 검색은 색상, 질감, 모양 정보 등의 저 차원 특징 정보와 이미지 데이타에 의미를 부여하기 위해 주석 처리하는 것이 일반적이다. 그리고 부여된 키워드와 같은 어휘 사전을 이용하여 의미기반 정보검색을 수행하고 있지만, 기존의 키 워드기반 텍스트 정보검색의 한계를 벗어나지 못하는 문제를 야기 시킨다. 두 번째 문제점으로 내용 기반이미지 검색시스템에서 검색 성능이 떨어지며, 복잡한 배경을 가진 이미지에서 객체를 분리하기가 어렵고, 그리고 영역의 과잉 분할로 인하여 영역 추출이 어렵다. 그리고 복잡한 다중 객체를 가진 이미지에서 객체들을 분리하기 어렵다는 것이다. 이러한 문제점들을 해결하기 위해서, 본 논문에서는 총 다섯 가지 단계로 처리할 수 있는 내용 기반 검색 시스템을 구축한다. 다섯 단계 중에서 가장 중요한 부분은 RGB 이미지들 중에서 배경이 가장 큰 것과 가장 작은 것을 추출한다. 특히, 배경이 가장 큰 이미지를 이용하여 피사체와 배경을 추출하는 방법을 제안한다. 두 번째 문제점을 해결하기 위해서, RGB 채널 분할 기법을 이용하여 객체를 분리하고, Watermerge의 임계값을 이용하여 영역의 과잉분할을 최적화하며, RGB 채널 선택 기법을 이용하여 다중객체를 분리하는 방법을 제안한다. 실험을 통하여 기존에 검색하기 어려웠던 복잡한 객체들을 검색하는 방법들을 대체할 수 있도록, 제안한 기법이 기존의 방법보다 검색 성능이 우수함을 입증한다.과 황산이온의 농도에 따르는 것으로 생각된다. 이상과 같이, 에트린자이트는 콘크리트 내에서 다양한 내외부적인 화학작용 따라 특징적인 산출 양상을 보이며, 주변 환경 조건에 따라 다른 광물로 전이되는 나타내었다. 이러한 연구결과, 에트린자이트의 생성에 따른 콘크리트의 성능저하는 그 광물학적 특성과 분포양상에 관련성을 가지는 것으로 나타났다.인 상관관계를 보이지 않는 것으로 나타난다. 이에 비해서 팽윤도는 벤토나이트의 광물조성, 표면전하 특성, 입도 및 형상 등의 물리화학적 성향을 포괄하는 체표면적 수치와 대략적으로 반비례적인 관계를 보인다 따라서 벤토나이트 현탁액에서의 유변학적 특성은 몬모릴로나이트의 표면전하 특성, 형태, 입도 및 조직 등의 차이에 의해서 달라지는 점토 입자들의 응집특성 및 취합결정체의 형상에 주로 규제되고, 제올라이트와 같은 미세한 불순 광물성분들의 영향도 부수적으로 관여되는 복합적인 성향인 것으로 해석된다.18.88%이상 향상시키는 것으로 나타났다. 3. 유지방 함량 23.80%인 control 치즈의 cholesterol 함량은 81.47mg/100g이었고, 균질압력 1200psi(91kg/$cm^2$)에 $\beta$-cyclodextrin 2%를 첨가한 cheese에서는 cholesterol 함량이 20.15mg/100g으로 cholesterol 제거율이 75.27%로 가장 높게 나타났다. 4. Meltability는 균질압력 1200psi(91kg/$cm^2$)에 $\beta$-cyclodextrin 1과 2%로 처리한

Content-Based Image Retrieval of Chest CT with Convolutional Neural Network for Diffuse Interstitial Lung Disease: Performance Assessment in Three Major Idiopathic Interstitial Pneumonias

  • Hye Jeon Hwang;Joon Beom Seo;Sang Min Lee;Eun Young Kim;Beomhee Park;Hyun-Jin Bae;Namkug Kim
    • Korean Journal of Radiology
    • /
    • 제22권2호
    • /
    • pp.281-290
    • /
    • 2021
  • Objective: To assess the performance of content-based image retrieval (CBIR) of chest CT for diffuse interstitial lung disease (DILD). Materials and Methods: The database was comprised by 246 pairs of chest CTs (initial and follow-up CTs within two years) from 246 patients with usual interstitial pneumonia (UIP, n = 100), nonspecific interstitial pneumonia (NSIP, n = 101), and cryptogenic organic pneumonia (COP, n = 45). Sixty cases (30-UIP, 20-NSIP, and 10-COP) were selected as the queries. The CBIR retrieved five similar CTs as a query from the database by comparing six image patterns (honeycombing, reticular opacity, emphysema, ground-glass opacity, consolidation and normal lung) of DILD, which were automatically quantified and classified by a convolutional neural network. We assessed the rates of retrieving the same pairs of query CTs, and the number of CTs with the same disease class as query CTs in top 1-5 retrievals. Chest radiologists evaluated the similarity between retrieved CTs and queries using a 5-scale grading system (5-almost identical; 4-same disease; 3-likelihood of same disease is half; 2-likely different; and 1-different disease). Results: The rate of retrieving the same pairs of query CTs in top 1 retrieval was 61.7% (37/60) and in top 1-5 retrievals was 81.7% (49/60). The CBIR retrieved the same pairs of query CTs more in UIP compared to NSIP and COP (p = 0.008 and 0.002). On average, it retrieved 4.17 of five similar CTs from the same disease class. Radiologists rated 71.3% to 73.0% of the retrieved CTs with a similarity score of 4 or 5. Conclusion: The proposed CBIR system showed good performance for retrieving chest CTs showing similar patterns for DILD.

비디오 영상 정보 검색을 위한 문자 추출 및 인식 (Caption Detection and Recognition for Video Image Information Retrieval)

  • 구건서
    • 한국컴퓨터산업학회논문지
    • /
    • 제3권7호
    • /
    • pp.901-914
    • /
    • 2002
  • 본 논문에서는 비디오에서 입력된 영상으로부터 내용기반 검색을 위해 자동으로 자막을 추출하여 특징 추출을 기반의 단층 연결 신경망 인식기(FE-MCBP)에 의해 자막 문자를 인식하여 영상 자막의 내용을 검출하는 방법을 제시하였다. 비디오에서 자막 추출은 먼저, 비디오에서 일정한 시간 간격으로 획득한 프레임 중에서 히스토그램 분석을 통하여 키 프레임을 찾는 과정을 수행하며, 그 다음에 각각의 키 프레임에 대하여 칼라 세그먼테이션 후 라인 검사 방법 통하여 자막 영역을 추출하도록 하였다. 마지막으로 추출된 자막영역에서 개별문자를 분리하였다. 본 연구에서는 칼라 히스토그램을 분석 후 지역 최대값을 이용하여 세그먼테이션 후 라인 검사를 수행함으로써 처리 속도와 자막영역 검출의 정확도를 개선하였다. 비디오에서 자막 추출은 비디오 정보를 멀티미디어 데이터베이스화하는 초기 단계로 추출된 자막은 바로 문자 인식기의 입력이 된다. 또한 인식된 자막정보는 데이터베이스로 구축되며 내용기반 검색 기법에 의해 검색되도록 하였다.

  • PDF

멀티미디어 데이타의 재발생 항목 마이닝을 위한 연관규칙 연구 (A Study on Association-Rules for Recurrent Items Mining of Multimedia Data)

  • 김진옥;황대준
    • 한국멀티미디어학회논문지
    • /
    • 제5권3호
    • /
    • pp.281-289
    • /
    • 2002
  • 컴퓨터 처리기술과 저장기술 그리고 인터넷 등의 영향으로 멀티미디어 데이터의 양은 급속하게 증가하지만 체계적으로 멀티미디어 데이터간의 연관규칙을 마이닝하는 연구는 초기 단계이다. 본 논문은 이미지 프로세싱 분야 및 내용기반 이미지 검색에 대한 기존 연구를 바탕으로 대형 영상 데이터 저장소에 저장된 이미지 데이터에서 재발생하는 항목간의 연관규칙을 찾으며 공간적 관계로 내용기반의 연관규칙을 마이닝하는 알고리즘을 제안한다. 제안된 연관규칙 탐색 알고리즘은 이미지의 색상, 질감, 모양 등 내용기반의 영상속성을 오브젝트 항목으로 하여 오브젝트가 이미지에서 재발생될 때를 이용, 이미지간의 연관규칙을 찾고 오브젝트들이 이미지에서 차지하고 있는 공간적 위치관계를 통해 드러나지 않는 이미지간의 연관규칙을 마이닝한다. 본 논문의 재발생 항목을 고려한 연관규칙 알고리즘은 Apriori 알고리즘보다 빈번한 항목 집합을 찾아내는데 더 높은 성능을 보인다는 것을 실험 을 통하여 제시한다. 제 안된 알고리즘은 동일한 정보원으로부터 받은 멀티미디어 데이터간의 연관성을 탐색하는데 특히 효과적이며 다양한 관련 응용분야에 적용할 수 있다.

  • PDF

영역 특징벡터를 이용한 내용기반 영상검색 (Content-Based Image Retrieval using Region Feature Vector)

  • 김동우;송영준;김영길;안재형
    • 정보처리학회논문지B
    • /
    • 제13B권1호
    • /
    • pp.47-52
    • /
    • 2006
  • 본 논문은 기존의 컬러 히스토그램 방법들의 단점을 극복하고자 영역 특징백터를 이용한 영상 검색 방법을 제안한다. 컬러 히스토그램 검색방법들은 양자화 오류 등의 이유로 정확성이 떨어지는 단점이 있다 이를 해결하기 위해 제안 방법은 색상 정보를 HSY 공간으로 변환하여 순수 색상 정보인 hue 성분만을 양자화하여 히스토그램을 구하고, 이를 명암, 이동, 회전등에 강인한 검색 특징으로 사용한다. 또한 컬러 히스토그램 방법들의 가장 큰 문제점인 공간 정보가 부족한 것은 영상을 16개 영역으로 나눠서 각 영역간의 비교를 통해 해결한다. 그리고 색상 검색에 추가적으로 모양 특징인 에지와 질감 특징인 DCT 변환의 DC를 이용하여 검색의 정확도를 높인다 1,000개의 컬러 영상을 사용해 실험한 결과 기존의 방법들 보다 좋은 정확성을 보인다.

Ferns 알고리즘 기반 밝기 및 회전 변화에 강인한 영상검색 시스템 설계 및 구현 (Design and Implementation of Video Search System robust to Brightness and Rotation Changes Based on Ferns Algorithm)

  • 윤석환;심재성;박석천
    • 한국멀티미디어학회논문지
    • /
    • 제19권9호
    • /
    • pp.1679-1689
    • /
    • 2016
  • Recently, due to the rapid development of multimedia technologies, as image data has been extensive and large-scaled, the problem of increasing the time needed to retrieve the desired image is gradually critical. Image retrieval system that allows users to quickly and accurately search for the desired image information has been researched for a long time. However, in the case of content-based image retrieval representative Color Histogram, Color Coherence Vectors (CCV), Scale Invariant Feature Transform (SIFT) used in sensitive to changes in brightness, rotation, there is a problem that can occur misrecognized division off the power. In this paper, in order to evaluate the video retrieval system proposed, no change in brightness, respectively 0°, 90°, 180°, 270° rotated brightness up based on the case of changing, when the brightness down the results were compared with the performance evaluation of the system is an average of about 2% to provide the difference in performance due to changes in brightness, color histogram is an average of about 12.5%, CCV is an average of about 12.25%, it appeared in the SIFT is an average of about 8.5%, Thus, the proposed system of the variation width of the smallest in average about 2%, was confirmed to be robust to changes in the brightness and rotation than the existing systems.

동적 분할 기법을 이용한 비디오 데이터의 대표키 프레임 추출 (A Dynamic Segmentation Method for Representative Key-frame Extraction from Video data)

  • 이순희;김영희;유근호
    • 전자공학회논문지CI
    • /
    • 제38권1호
    • /
    • pp.46-57
    • /
    • 2001
  • 시간적 특성을 가진 비디오 자료와 같은 멀티미디어의 자료에 접근하기 위해서는 내용 기반 이미지 검색 기술이 필요하다. 더욱이, 내용 기반 이미지 검색의 기본적인 기술 중의 하나가 대표키 프레임들의 추출이다. 제안된 방법을 구현했을 뿐만 아니라, 대표키 프레임들이 비디오 데이터의 특성에 대한 데이터 분석을 사용하여 추출될 수 있음을 보였다. 또한, 제안된 방법이 정확함 뿐만 아니라 효과적이라는 것을 증명하였다. 제안한 방법은 비디오 데이터 베이스를 위해 색인을 구축하는데 매우 유용하다. 그러므로 제안한 방법이 실세계에서 비디오 데이터 베이스를 구축하는데 사용되기를 기대한다.

  • PDF

키 프레임 특징들에 적응적 가중치 부여를 이용한 검색 성능 개선 (Improvement of Retrieval Performance Using Adaptive Weighting of Key Frame Features)

  • 김강욱
    • 한국멀티미디어학회논문지
    • /
    • 제17권1호
    • /
    • pp.26-33
    • /
    • 2014
  • 비디오 검색 및 색인은 먼저 압축 비디오에서 장면전환을 검출하여 샷(shot)으로 분리한 후 샷 내에 키프레임 특징 정보들의 유사도 비교를 통해 이루어진다. 일반적으로 내용기반 영상 및 비디오 검색에서는 컬러, 형태, 질감의 세 가지 대표적인 영상 특징들이 주로 사용된다. 그러나 여러 특징들이 결합되어 사용되는 검색 시스템이라 할지라도 각 특징들에 대한 가중치가 적합하게 부여되지 않으면 검색되는 결과 영상의 순위가 크게 변하여 검색 성능이 떨어지게 된다. 이러한 문제점을 해결하기 위해 본 논문에서는 여러 특징들이 결합되어 사용될 때 각 특징에 대한 가중치를 적응적으로 부여해서 비디오 검색 성능을 개선하고자 한다. 제안한 방법을 3,200개 키 프레임으로 구성된 비디오 데이터베이스에서 실험을 하였고 다양한 성능평가 방법을 통해 제안한 방법이 기존 고정가중치 부여를 이용한 방법과 비교하여 검색 성능이 개선됨을 볼 수 있었다.