In puan area the environmental surveys were carried out at two farms of hard clam, Meretrix lusoria from April 1987 to November 1978 in order to know heather the farm environments could be rehabilitated for the cultivation of hard clam or not. The range of temperature of surface seawater was $10.7{\~}27.4^{\circ}C$, pH $7.6{\~}8.2$, salinity $22.3{\~}30.3$ ppt, COD $0.20{\~}4.71\;mg/{\ell}$, sulfide $0.04{\~}0.22\;{\mu}g-at./{\ell}$, suspended solid $34.8{\~}199.3\;mg/{\ell}$ chlorophyll a $3.71{\~}49.02\;mg/m^3$, TIN $2.01{\~}24.47\;{\mu}g-a5./{\ell}$, phosphate $0.60{\~}11.03\;{\mu}g-at./{\ell}$ and silicate $4.04{\~}476.36\;{\mu}g-at./{\ell}$. The range of temperature of substratum (bottom soil) was $14.2{\~}29.7^{\circ}C$, pH $8.3{\~}9.5$, water content of substratum was $0.28{\~}0.49\;mg/g$ dried mud, COD $2.80{\~}50.94\;mg/g$ dried mud, total organic matter $1.05{\~}1.97\%$ concentration of total Kjedhal nitrogen $31.9{\~}194.9\;{\mu}g./{\ell}$ dried mud, and sulfide $0.032{\~}0.133\;mg/g$ dried mud. Fine sand was dominant ranging over $92{\~}95\%$ and silt and clay was $2.8{\~}8.1\%$ of the composition of substratum. Some residual agricultural chemicals, ${\alpha},\;{\beta},\;{\gamma}$-BHC, heptachlor, heptachlor-epoxide, aldrin, DDE, DDT and dieldrin were detected in hard clams collected from Puan areas. Especialy, more chemical were detected during the period of rainfalls. From above results, it is considered that the hard clam frams were not yet recovered from deteriorated conditions for aquaculture.
To understand eutrophication in the upper regions of brackish Lake Sihwa with a limited water exchange, temporal and spatial distributions of pollutants in water and sediment were investigated from March to October in 2005 and 2006. Also, pollution levels of water and sediment were estimated by trophic state index (TSI) and sediment quality guideline (SQG). Total nitrogen (TN), total phosphorus (TP), organic matter (COD), and chlorophyll $\alpha$ (Chl-$\alpha$) concentrations in the surface waters were largely varied temporally and spatially, and the variations were highest in the middle areas where strong halocline was formed. Chl-$\alpha$ concentrations in the middle area were very high in April (>$900\;{\mu}g\;L^{-1}$) when algal blooms (red tides) occurred. The relationships between TN and Chl-$\alpha$ (r=0.31), and TP and Chl-$\alpha$ (r=0.65) indicated that the algal growth was primarily affected by phosphorus rather than nitrogen. The distribution of COD was similar to that of Chl-$\alpha$, indicating that the autochthonous organic matters may be a more important carbon source, especially in the middle areas. The brackish water regions were classified as eutrophic or hypertrophic based on their TSI values ($69{\sim}76$). In addition, the content of nutrients (especially TP) in surface sediments were classified as severe polluted state, except the upper areas. Major causes of the eutrophication observed were probably due to high nutrients loading from watersheds, the phosphorus release from anaerobic sediment, and long retention time by the limited water exchange through the sluice gates.
The overall objective of this study was to improve tomato fruit quality, while maximizing yield. The variety of 'Momotaro' was grown in the basic nutrient solution of 1.6 dS.m$^{[-10]}$ which was supplemented by three levels of seawater with EC 1.0, 2.0 or 3.0 dS.m$^{[-10]}$ . Tomato plants were cultivated in cool seasons. Plant growth characteristics were compared between treatments, and fruits were classified to analyse fruit quality characteristics according to ripening stages: MG, Br, Br+3, Br+5, Br+7 and Br+10. Adding seawater generally did not affect the shoot growth parameters such as plant height, leaf length, leaf width, internode length and chlorophyll content. Adding seawater negatively affected yield parameters such as the height and weight of fruit, marketable fruit weight per plant and marketable fruit yield. Therefore, the more yield reduction was obtained with the increasing level of seawater treatment. Fruit quality was improved by seawater treatment. The degree of the effect for $^{\circ}$Bx degree and sugars were the highest with the EC of seawater 2.0~3.0 dS.m$^{[-10]}$ , and at the Br+5~Br+7 of ripening stages. The relative abundance of tomato flavor, volatile components, was not generally affected by the seawater treatment with an exception of 6-methyl-5-hepten-2-one. The relative abundance of most volatile components increased as ripening progressed. The increment began at the Br stage and showed the highest increment at the Br+5~Br+7 stages. The results from these experiments suggest that seawater treatment of EC 3.6 dS.m$^{[-10]}$ for hydroponics is good for improving tomato quality. Fruit quality is the best at the Br+5~Br+7 ripening stages. It is considered that these results may be applied far use in hydroponic culture to improve fruit quality with minimum yield reduction.
This study was conducted to evaluate the effect of a growth retardant, Paclobutrazol on the growth, yield and its components. and physiological traits in peanut cv. Saeddle (early variety) and Nampung (medium variety). The results are summarized as follows : Main stem and branch length of both varieties were remarkably retarded at early growth stage application, but the retardation effect was reduced at late growth stage application. Number of branches was increased remarkably by treating 60ppm at 20days after seedling (DAS) in early variety. Lodging ill medium variety was not observed through growth period when 120ppm of Paclobutrazol was applied while lodging was not appeared between 40 DAS and 80 DAS in early variety. The numbers of riped pods in early variety was increased when application of 120ppm at 40 DAS was made while it was increased as application of 120ppm at 90 DAS in the medium variety. Cercospora leaf spot was reduced by spraying at 40 or 50 DAS regardless of concentration and varieties. Chlorophyll content and photosynthetic activity increased when paclobutrazol was applied during 40-60 DAS in early variety while these were observed at 90 DAS in medium variety. Seed weight tended to increase as paclobutrazol application was delayed. The ratio of pods to seeds was higher at 60ppm-40 DAS in early variety while it was higher at 120ppm-90 DAS in medium variety.
The mechanism imparting salt tolerance to crop plants remains still unsolved, although soybean has been classified as a susceptible plant to NaCl. To determine optimum parameters on physiological responses for improving sensitivity of salinity in breeding program, soybean (Glycine max Merr., cv. "Gwan-gan") plants were grown in a greenhouse, treated 20 days after emergence for 7 days with NaCl at 0, 30, 60, and 90mM, corresponding to electric conductivity of 1.2, 4.4, 7.3, and 10.4 dS/m, respectively, and assessed 30 days after treatment. Chlorophyll contents were significantly decreased by NaCl ($0.4{\sim}1.0\;mg/g$) compared to control (1.2 mg/g). Photosynthesis rate by NaCl treatment at $0{\sim}90\;mM$ at flowering stage was ranged from 5.0 (control) to $9.6\;{\mu}mol/m^2/s$. Oxygen for respiration was consumed from 5.4 to $9.7\;{\mu}mol/m^2/s$ so that the ratio of $O_2$ (evolution:consumption) was increased with the increase of NaCl, indicating that $O_2$ consumption seems to go beyond $O_2$ evolution. Water potential of leaf at vegetative stage II was ranged from -0.6 to -1.8 MPa and the highest level was observed at mid-day. Water potential by salt stress was decreased with range of $-2.1{\sim}-2.7MPa$ compared to control. Transpiration was decreased from 17% to 20% by NaCl stress. Water vapor diffusing resistance of intercellular air space was affected significantly, increasing up to $16{\sim}24%$ compared to control by NaCl treatment. Salt-treated soybean tended to accumulate $Na^+$, specially in root, with reduced absorption of N, P, $K^+$, $Ca^{2+}$, and $Mg^{2+}$ contents. Free proline content of soybean leaf as affected by different NaCl concentrations was increased 4.2 times ($184{\sim}434\;{\mu}g/g$) more than control. NaCl also increased activities of nitrate reductase and peroxidase by $28{\sim}161%$ and $3{\sim}22%$, respectively. The results show that physiological characteristics of soybean plants during assay were useful as the best parameters of salt stress or salt tolerance test to improve sensitivity in screening and breeding program among cultivars or germplasms.
This study was carried out to investigate the microclimate (photosynthetically active radiation and temperature) response to different shading materials(shade plate, and polyethylene net) on Korean ginseng(Panax ginseng C.A. Meyer) bed. Photosynthetically active radiation(PAR) under polyethylene net was approximately 24 ~ 30% higher than that under shade plate on sunny day. Also, PAR was remarkably decreased from the front to the rear rows of ginseng beds. Temperature under polyethylene net was higher than that of shade plate. Internal temperature under polyethylene net was 1.9 ~ 3.1% higher than that under shade plate at the different rows of ginseng bed. Mean of total daily temperature under polyethylene net was higher at the rear rows than at the front rows, while that under shade plate was higher at the front rows than at the rear row of ginseng bed. Mean of total daily temperature on sunny days(April 15 and May 17) was 7.3% lower under shade plate than above outside but, polyethylene net was 0.7% high, while that on cloudy days(April 11 and May 15) was 1.6% higher under polyethylene net than above outside, but shade plate was 0.7% low. Also, overall mean of total daily temperature under polyethylene net was 7.0, 7.8, and 8.8 % on sunny day(April 15 and May 17), and 1.7, 1.6, and 3.5% on cloudy day(April 11 and May 15) higher than that under shade plate, respectively. The SPAD values of 6 years old ginseng at two point(front, center) in bed under shade plate showed the highest value, and the lowest under polyethylene net. The SPAD of 6 years old ginseng at rear in bed was not statistically significant under two shading materials.
This study was carried out to investigate the effects of shipping temperature and harvesting stage on the quality and vase life of cut flower in standard chrysanthemum 'Baekma' for export. Cut flowers harvested at flowering stage 4 were stored for 24 hours at $5^{\circ}C$, and then quality and vase life were evaluated after simulated shipping for 48 hours at 5, 20, and $35^{\circ}C$. In addition, cut flowers harvested in flowering stage 1 to stage 6 were evaluated after simulated shipping for 72 hours at $5^{\circ}C$. As shipping temperature increased, $CO_2$ concentration inside the box rapidly increased, and $O_2$ concentration greatly decreased. The vase life of cut flowers was extended by 3 days and chlorophyll content of leaves, fresh weight, solution uptake, and flower diameter were better maintained in $5^{\circ}C$ shipping than in 20 or $35^{\circ}C$ shipping. The vase life of cut flowers harvested at flowering stage 1 or 2 was extended by 5.2 or 5.5 days compared to those harvested at flowering stage 6, more 6. The fresh weight was lower and flower diameter was smaller by 1.3 or 2.5 cm in cut flowers of flowering stages 1 through 3 than flowering stages 4 through 6. In addition, the cut flowers of flowering stages 4 through 6 showed higher solution uptake than those of flowering stages 1 through 3. These results suggest that shipping at $5^{\circ}C$ of cut flowers harvested at flowering stage 4 is preferential for promoting vase life and quality of cut flower in standard chrysanthemum 'Baekma' for export to Japan.
Song, Ki Eun;Choi, Jae Eun;Jung, Jae Gyeong;Ko, Jong Han;Lee, Kyung Do;Shim, Sang-In
KOREAN JOURNAL OF CROP SCIENCE
/
v.66
no.4
/
pp.307-317
/
2021
In recent years, global warming has led to frequent climate change-related problems, and elevated temperatures, among adverse climatic factors, represent a critical problem negatively affecting crop growth and yield. In this context, the present study examined the physiological traits of wheat plants grown under high temperatures. Specifically, the effects of elevated temperatures on seed development after heading were evaluated, and the vegetation indices of different organs were assessed using hyperspectral analysis. Among physiological traits, leaf greenness and OJIP parameters were higher in the high-temperature treatment than in the control treatment. Similarly, the leaf photosynthetic rate during seed development was higher in the high-temperature treatment than in the control treatment. Moreover, temperature by organ was higher in the high-temperature treatment than in the control treatment; consequently, the leaf transpiration rate and stomatal conductance were higher in the control treatment than in the high-temperature treatment. On all measuring dates, the weight of spikes and seeds corresponding to the sink organs was greater in the high-temperature treatment than in the control treatment. Additionally, the seed growth rate was higher in the high-temperature treatment than in the control treatment 14 days after heading, which may be attributed to the higher redistribution of photosynthates at the early stage of seed development in the former. In hyperspectral analysis, the vegetation indices related to leaf chlorophyll content and nitrogen state were higher in the high-temperature treatment than in the control treatment after heading. Our results suggest that elevated temperatures after the booting stage positively affect wheat growth and yield.
Effects of light generated by LEDs on shoot growth and rooting of Tsuru-rindo(Tripterospermum japonicum) were evaluated. Apical shoots(one or two node with 3-4 leaves) were cultured on MS basal medium with 3% sucrose and maintained for four weeks under five different light qualities: fluorescent lamp(F), 100% red LED(R), 70% red LED+30% blue LED(R7B3), 50% red LED+50% blue(R5B5), or 100% blue LED(B). Rooting was promoted by both red light and fluorescent lamp, and the effect was further promoted under the ventilation. Red light enhanced shoot node elongation, whereas blue light appeared to suppress it. Growth of shoots and leaves were enhanced under the ventilation irrespective of the different light qualities. Under the ventilated condition, total fresh weight of plants was highest in R7B3 LED as 257.7 mg per plant. Dry matters, which are used for index of plant growth, were lowest under red light, whereas it was highest under blue light. The dry matter was inclined to getting higher by ascending the ratio of blue light and red light. Total chlorophyll content was highest in both R7B3 LED and R5B5 LED under ventilation as 29.5 and 31.2, respectively. Above results suggest that light quality optimization could be an important factor to foster in vitro growth of the species. Ventilation treatment appeared to be another important factor to induce normal shoot growth and rooting.
To find out the optimum application method of slow-releasing fertilizer(SRF) and conventional fertilizer(CF) with different fertilization rate under two culture methods[l0-day old seedling machine transplanting(MT) and direct-sowing on dry paddy(DS)] in the south-western region(clay loam soil) of Korea, used were Chosun slow-releasing fertilizer(silicate latex coated fertilizer: N-P$_2$O$_{5}$-K$_2$O =18-12-13) and conventional fertilizer. Plant height and number of tillers with different two culture methods were higher at MT than DS in early growth. The ratio of dry weight in heading stage was higher at CF than SRF in MT than DS and especially, SRF 80% + CF 20% than SRF 100% or CF 100%. Leaf area index (LAI) in heading stage was higher at CF in MT but higher at SRF in DS than their counterparts. Chlorophyll content was higher at SRF than in CF expect for heading stage(HS), especially in DS. It was highest at HS in CF without its difference during maximum tillering stage(MTS) and panicle formation stage(PFS), while highest at PFS in SRF with tendency of gradual increase and decrease before and after PFS, respectively. Heading was delayed 2~3 days at SRF in two cultrue methods and 4~5 days at SRF in DS in comparison with CF in MT with delay of 2 days at DS compared with MT. Culm length was longer at CF in MT and at SRF in DS than their counterparts. Panicle number per m was more at SRF and in DS. Filled grain ratio was higher at CF and in MT. Yield was obtained 101 and 100% at 100% and 80% level of SRF in DS respectively, and 96% at 80% level of CF in MT, compared with conventional application method (516kg /l0a), and increased 2~4% at DS and 0~3% at MT in SRF. Yield was high in order of 100%(SRF) =80%(SRF) + 20%(CF) > 100%(SRF) + 20%(CF) > 80%(SRF) at MT and 80%(SRF) + 20%(CF) =100%(SRF) > 80%(SRF) =100%(SRF) + 20%(CF) at DS.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.