• 제목/요약/키워드: Contaminated area

검색결과 688건 처리시간 0.024초

원전사고 후 광역의 방사성 오염부지 내 거주민에 대한 시간에 따른 피폭방사선량 평가 (Assessment of Temporal Trend of Radiation Dose to the Public Living in the Large Area Contaminated with Radioactive Materials after a Nuclear Power Plant Accident)

  • 고아라;김민준;조남찬;설증군;김광표
    • 방사선산업학회지
    • /
    • 제9권4호
    • /
    • pp.209-216
    • /
    • 2015
  • It has been about 5 years since the Fukushima nuclear power plant accident, which contaminated large area with radioactive materials. It is necessary to assess radiation dose to establish evacuation areas and to set decontamination goal for the large contaminated area. In this study, we assessed temporal trend of radiation dose to the public living in the large area contaminated with radioactive materials after the Fukushima nuclear power plant accident. The dose assessment was performed based on Chernobyl model and RESRAD model for two evacuation lift areas, Kawauchi and Naraha. It was reported that deposition densities in the areas were $4.3{\sim}96kBq\;m^{-2}$ for $^{134}Cs$, $1.4{\sim}300kBq\;m^{-2}$ for $^{137}Cs$, respectively. Radiation dose to the residents depended on radioactive cesium concentrations in the soil, ranging $0.11{\sim}2.4mSv\;y^{-1}$ at Kawauchi area and $0.69{\sim}1.1mSv\;y^{-1}$ at Naraha area in July 2014. The difference was less than 5% in radiation doses estimated by two different models. Radiation dose decreased with calendar time and the decreasing slope varied depending on dose assessment models. Based on the Chernobyl dosimetry model, radiation doses decreased with calendar time to about 65% level of the radiation dose in 2014 after 1 year, 11% level after 10 years, and 5.6% level after 30 years. RESRAD dosimetry model more slowly decreased radiation dose with time to about 85% level after 1 year, 40% level after 10 years, and 15% level after 30 years. The decrease of radiation dose can be mainly attributed into radioactive decays and environmental transport of the radioactive cesium. Only environmental transports of radioactive cesium without consideration of radioactive decays decreased radiation dose additionally 43% after 1 year, 72% after 3 years, 80% after 10 years, and 83% after 30 years. Radiation doses estimated with cesium concentration in the soil based on Chernobyl dosimetry model were compared with directly measured radiation doses. The estimated doses well agreed with the measurement data. This study results can be applied to radiation dose assessments at the contaminated area for radiation safety assurance or emergency preparedness.

보은제일광산일대의 밭토양에 대한 독성원소들의 분산과 부화 (Dispersion and Enrichment of Potentially Toxic Elements of Farmland Soils from the Boeunjeil Mine Area, Korea)

  • 유봉철;김기중;이찬희;이현구
    • 자원환경지질
    • /
    • 제40권1호
    • /
    • pp.15-28
    • /
    • 2007
  • 이 연구에서는 보은제일광산 주변 밭토양의 오염정도를 주원소, 희토류원소 빛 미량원소를 이용하여 접근해보았다. 이들 연구결과는 충주, 덕평, 보은 및 추부지역의 것들과 비교되었다. 주성분 원소 중 Fe와 S는 비오염예상지역, 충주 및 보은지역 밭토양의 원소보다 높았다. 오염예상지역에서의 미량윈소는 비오염예상지역, 충주, 덕평, 보은 및 추부지역의 함량보다 높았다. 이들 원소들은 상관성과 분산을 기초로 U, Cd, Ni, Sr, V, Zn 등의 원소들과 As, Co, Cu, Mo, Pb, Sb 등의 원소들로 구분되며 두 그룹의 원소들은 원소간에 양의 상관성을 갖는다. 잠재적 독성윈소들의 부화 계수는 오염예상지역에서 5 이상의 값을 갖으며 비오염예상지역에서는 4 미만의 값을 갖는다. 오염예상지역에서 As, Cd, Co, Cu, Mn, Ni, U 및 Zn 원소의 지누적지수는 1 이상의 값을 갖으며, 비오염예상지역에서는 Mn원소를 제외한 모든 미량원소가 1 미만의 값을 갖는다. 잠재적 독성원소에 대한 부화지수에서 오염예상지역($0.3{\sim}87.0$)과 비오염예상지역($0.4{\sim}3.9$)은 차이를 보였다. 전체적인 오염예상지역 밭토양내 원소들(Fe, S, As, Cd, Co, Cu, Ni, U, Zn)의 높은 함량은 광산활동에 의한 오염을 지시한다.

비용해성 산업용 분진이 배전용 자기제 현수애자의 전기적 특성에 미치는 영향 (The Effect of the Non Soluble Industrial Dust on the Electrical Properties of Distribution Porcelain Suspension Insulators)

  • 김찬영;송일근;김주용;한재홍;김동명;이병성
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권4호
    • /
    • pp.182-189
    • /
    • 2001
  • In this paper, the distribution suspension porecelain insulators which had been used for long periods in the contaminated area were evaluated. The contaminated area is close to the sea and in the high density of industries. The heavily contaminated domestic and imported insulators were investigated by using electrical characteristics, such as power-frequency dry flashover voltage, power-frequency wet, flahover voltage, and leakage current. Also, these electrical results were compared with the contaminants on the surface. From these analysis, we found that the contamination from the industrial dust, only slightly decreased flashover voltage and increased leakage current. Therefore, the electrical properties of insulators used for 30 years in the area of coast and industrial complex were not much changed.

  • PDF

Recommended Rice Intake Levels Based on Average Daily Dose and Urinary Excretion of Cadmium in a Cadmium-Contaminated Area of Northwestern Thailand

  • La-Up, Aroon;Wiwatanadate, Phongtape;Pruenglampoo, Sakda;Uthaikhup, Sureeporn
    • Toxicological Research
    • /
    • 제33권4호
    • /
    • pp.291-297
    • /
    • 2017
  • This study was performed to investigate the dose-response relationship between average daily cadmium dose (ADCD) from rice and the occurrence of urinary cadmium (U-Cd) in individuals eating that rice. This was a retrospective cohort designed to compare populations from two areas with different levels of cadmium contamination. Five-hundred and sixty-seven participants aged 18 years or older were interviewed to estimate their rice intake, and were assessed for U-Cd. The sources of consumed rice were sampled for cadmium measurement, from which the ADCD was estimated. Binary logistic regression was used to examine the association between ADCD and U-Cd (cut-off point at $2{\mu}g/g$ creatinine), and a correlation between them was established. The lowest estimate was $ADCD=0.5{\mu}g/kg\;bw/day$ [odds ratio (OR) = 1.71; with a 95% confidence interval (CI) 1.02-2.87]. For comparison, the relationship in the contaminated area is expressed by $ADCD=0.7{\mu}g/kg\;bw/day$, OR = 1.84; [95 % CI, 1.06-3.19], while no relationship was found in the non-contaminated area, meaning that the highest level at which this relationship does not exist is $ADCD=0.6{\mu}g/kg\;bw/day$ [95% CI, 0.99-2.95]. Rice, as a main staple food, is the most likely source of dietary cadmium. Abstaining from or limiting rice consumption, therefore, will increase the likelihood of maintaining U-Cd within the normal range. As the recommended maximum ADCD is not to exceed $0.6{\mu}g/kg\;bw/day$, the consumption of rice grown in cadmium-contaminated areas should not be more than 246.8 g/day. However, the exclusion of many edible plants grown in the contaminated area from the analysis might result in an estimated ADCD that does not reflect the true level of cadmium exposure among local people.

철도 정비창의 폐기물과 혼합된 중금속 오염토 분리에 관한 연구 (A Study on Isolation of Mixed Heavy Metal-Contaminated Soil and the Waste in Railroad Workshop)

  • 손우화;이승호
    • 한국지반환경공학회 논문집
    • /
    • 제13권12호
    • /
    • pp.59-66
    • /
    • 2012
  • 본 연구에서는 철도정비창 부지 내에 폐기물 및 중금속오염 구간에서 채취한 토양을 대상으로 하였다. 그리고 효율적인 정화공정 설계를 위하여 고농도 오염구간, 저농도 오염구간, 폐주물사 함유 시료를 대상으로 입도분포 및 입도 분포 오염농도 분석을 실시하였다. 하지만 폐콘크리트, 폐목재 등의 건설폐기물, 폐주물사, 소각재 등이 부지 전반에 걸쳐 매립되어 있어 일반토양 오염과 다른 양상을 보이고 있었다. 따라서 일반적인 중금속정화기술로는 오염원이 감소하지 않아 혼합된 폐기물 중에 자성을 띠는 성분을 자력선별을 적용하여 실험한 결과 중금속 오염도는 감소하는 것으로 나타났다.

연직배수재에 의한 토양오염물질 추출에 미치는 영향인자 분석 - 토양 및 오염유체의 물성치를 중심으로 (Analysis of Effecting Parameters on Extraction of Soil Contaminants using Vertical Drains - Focusing on Soil and Contaminants Physical Properties)

  • 이행우;장병욱;강병윤;김현태
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2005년도 학술발표논문집
    • /
    • pp.355-360
    • /
    • 2005
  • The properties of contaminants, contaminated soil, and the elapsed time are important factors to in-situ soil remediation. Gabr et. al. (1996) derived the solution equation of contaminant concentration ratio as initial one $(C/C_0)$ with time and spatial changes in contaminated area with vertical drains. The contaminant concentration ratio $(C/C_0)$ is analyzed with time and spatial changes as varying the effective diameter, porosity, shape factor, density of contaminated soil and temperature in ground and unit weight, viscosity of contaminants by using FLUSH1 model. Results from numerical analysis indicate that the most important factor to the in-situ soil remediation using vertical drains is the effective diameter of contaminated soil. It also shows that the viscosity of contaminants, porosity of soil, shape of soil, temperature in ground, unit weight of contaminants are, in order, affected to the soil remediation but density of soil is insignificant to the soil remediation.

  • PDF

유류오염부지에서 자연저감기법 적용 사례연구 II. 지하수모니터링에 의한 자연저감 평가 (A Case Study of Monitored Natural Attenuation at the Petroleum Hydrocarbon Contaminated Site : II. Evaluation of Natural Attenuation by Groundwater Monitoring)

  • 윤정기;이민효;이석영;노회정;김문수;이강근;양창술
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제9권3호
    • /
    • pp.38-48
    • /
    • 2004
  • TEX농도의 지속적인 감소 및 비오염지역에 비해 오염지역에서 용존산소(DO), 질산염(NO$^{3-}$ ), 황산염(SO$_4$$^{2-}$ )농도의 뚜렷한 감소와 2가철($Fe^{2+}$)농도의 증가, 산화환원전위의 현저한 저하, pH중성 등의 지화학적 인자의 분포특성으로 미루어 보아 대상부지는 혐기성 상태에서 토착미생물에 의한 오염물질의 생분해가 이루어지고 있는 것으로 판단되며, 또한 이와 함께 투수성이 큰 현장부지의 지질학적 특성상 강우에 의한 지하수의 재유입으로 인한 희석 및 분산도 TEX농도의 감소에 부수적인 요인이 되었을 것으로 추정된다. 한편, 연구대상부지에서의 생분해능(EAC)은 9.04∼35.85 mg/L범위에 있으며, 평균 24.73 mg/L이었다. 그리고 연구대상부지에서 생분해에 가장 큰 영향을 주는 생분해과정으로는 황산염환원으로 기여도가 약 75%정도인 것으로 나타났으며, 다음으로는 질산염환원 그리고 산화철(3가철)환원의 순으로 나타났다. 연구대상부지의 생분해능(EAC)를 기초로 년간 분해할 수 있는 TEX의 양을 계산해 보면 121∼45.3kg/year이며, 이 값은 년간 TEX의 지하수 부하량의 약 80%정도에 해당하는 것이다. 현장부지에서의 계산된 전체 자연저감율은 0.0017∼0.0224day$^{-1}$(평균 0.0110day$^{-1}$)이며, 1차 생분해율은 0.0008∼0.0106day$^{-1}$(평균 0.0051day$^{-1}$)이었다. 1차 생분해율에 근거한 연구대상부지에서 TEX의 반감기는 866.25∼65.38일(2.37∼0.18 years)로 계산되었다.

폐 광산 지역 중금속 오염 토양의 석회안정화 적용 시 용출특성 (A Leaching Characteristics on Lime Stabilization of Heavy Metal Contaminated Soil in a Waste Mine Area)

  • 어성욱
    • 한국물환경학회지
    • /
    • 제27권6호
    • /
    • pp.862-867
    • /
    • 2011
  • Pozzolanic-based stabilization/solidification (S/S) is an effective and economic remediation technology to immobilize heavy metals in contaminated soils. In this study, quick lime (CaO) was used to immobilize cadmium and zinc present in waste mine contaminated clayey sand soils. Addition of 5% quicklime to the contaminated soils effectively reduced heavy metal leachability after 2 bed volume operation below the drinking water regulatory limits. Lime addition was revealed to increase the immobilization for all heavy metals in tested pH ranges, so it could be an optimal choice for short-term remediation of heavy metal contaminated soil. The mass balances for these column tests show metal reduction of 92% for Cd and 87% for Zn of total resolved mass in case of 5% lime application.

차단벽을 이용한 DNAPL 오염지역의 복구 (Remediation of A DNAPL Contaminated Site Using Containment WALL)

  • Lee, Kwang-Yeol;Joo, Wan-Ho
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 1998년도 공동 심포지엄 및 추계학술발표회
    • /
    • pp.81-85
    • /
    • 1998
  • In the present study, the design method of containment walls is proposed by utilizing an existing site. The selected remedy for the Source Area of Operable Unit 2 at Hill Air Force Base stipulated containment of the pure-phase trichloroethylene contamination. The in-place-mixed wall construction was selected because of the irregular topography, small area of the site, and the requirement to reach depths of greater than 90 feet below ground surface. Bench-scale compatibility studies were performed for the containment wall mix design on three commercial bentonite clays. The samples were subject to screening tests and long-term tests for evaluation of changed soil properties when exposed to the contaminated groundwater.

  • PDF

자동차 배출가스에 의한 도심 교차로의 대기오염 특징 (Characteristics of Air Pollution at a Junction Area Contaminated with Vehicle Emissions)

  • 이승복;배귀남
    • 한국자동차공학회논문집
    • /
    • 제18권4호
    • /
    • pp.48-53
    • /
    • 2010
  • Roadside measurement of ultrafine particles, black carbon, and NOx was carried out to investigate air pollution at a junction area contaminated with vehicle emissions in Seoul from March 19 to 23, 2007. Diurnal variation of ultrafine particles, black carbon, and $NO_x$ concentrations at a roadside showed minimum at around 2-4 a.m. and two peak modes during the morning and evening rush hours. Since these pollutants might be mainly emitted from vehicles, the roadside was highly contaminated with vehicles.