• 제목/요약/키워드: Contaminant removal efficiency

검색결과 69건 처리시간 0.039초

HRT 변경에 따른 호기성 그래뉼 슬러지의 오염원 제거효율에 미치는 영향 (Effects of Different Hydraulic Retention Times on Contaminant Removal Efficiency Using Aerobic Granular Sludge)

  • 김현구;안대희
    • 한국환경과학회지
    • /
    • 제28권8호
    • /
    • pp.669-676
    • /
    • 2019
  • The purpose of this study was to evaluate the effects of different Hydraulic Retention Times (HRTs) on the contaminant removal efficiency using Aerobic Granular Sludge (AGS). A laboratory-scale experiment was performed using a sequencing batch reactor, and the Chemical Oxygen Demand (COD), nitrogen, orthophosphate removal efficiency, AGS/MLSS ratio, and precipitability in accordance with the HRT were evaluated. As a result, the COD removal efficiency was not significantly different with the reduction in HRT, and at a HRT of 6 h, the removal rate was slightly increased owing to the increase in organic loading rate. The nitrogen removal efficiency was improved by injection of influent division at a HRT of 6 h. As the HRT decreased, the MLSS and AGS tended to increase, and the sludge volume index finally decreased to 50 mL/g. In addition, the size of the AGS gradually increased to about 1.0 mm. Therefore, the control of HRT provides favorable conditions for the stable formation of AGS, and is expected to improve the contaminant removal efficiency with the selection of a proper operation strategy.

Image Analysis: A Novel Technique to Determine the Efficiency of Wiping Cloths

  • Lee Jae-Hyung;Kim Seong-Hun;Oh Kyung-Wha
    • Fibers and Polymers
    • /
    • 제7권1호
    • /
    • pp.73-78
    • /
    • 2006
  • The ability to absorb liquid and the dust removal performance are important factors for wiping cloths used to remove contaminants. We have developed a method that can determine the contaminant removal performance of wiping cloths. In the gravimetric method, experimental errors are unavoidable because the contaminant plate is much heavier than the contaminant material. However, we used image analysis to reduce the experimental errors, and did not use the heavy contaminant plate. The correlation coefficient between the image. analysis and the gravimetric methods was very high, at R=0.97, with a significance level of 95%. From the correlation analysis and empirical data, the image analysis method is a useful tool for measuring wiping efficiency. The wiping efficiency measured using image analysis has a close relationship to the wiping speed, viscosity of the contaminant, and wiping pressure, at the significance level of 95%.

Effect of Contaminant Source Location on Indoor Air Quality

  • Lee, Hee-Kwan;Kim, Shin-Do
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제14권E호
    • /
    • pp.1-7
    • /
    • 1998
  • This paper presents an experimental study for understanding the indoor air quality in a room. A model room, which had a ceiling-mounted supply and a sidewall-mounted exhaust, was used to examine the effect of air exchange rate (AER) and contaminant source location (CSL) as a function of the elapsed time. A tracer gas method, using carbon monoxide tracer, gas analyzers, and a data acquisition system, was applied to study the ventilation air distribution and the tracer removal efficiency, so-called pollutant removal efficiency, in the model room. The experiment was composed of two parts; firstly the AER was varied to examine its effect on the ventilation air distribution and the ventilation effectiveness and secondly both AER and CSL were considered to determine their effect on the pollutant removal efficiency. It was found that the ventilation effectiveness in the model was proportional to AER but not linearly. It was also found that changing the CSL can improve the pollutant removal efficiency. In some cases, the efficiency improvement by increasing AER was achieved by simply changing CSL.

  • PDF

다구획 작업환경에서의 오염농도 예측을 위한 이론적 모델의 개발 (Development of a Theoretical Model for Predicting Contaminant Concentrations in a Multi-zone Work Environment)

  • 조석호
    • 한국산업보건학회지
    • /
    • 제21권4호
    • /
    • pp.185-192
    • /
    • 2011
  • To predict contaminant concentrations within a multi-zone work environment, an air quality model in the work environment was developed. To do this, airflow equations on the basis of orifice equation were solved by using the Conte and De Boor scheme, and then equations for the conservation of mass on contaminant were solved by using the fourth-order Runge-Kutta algorithm. To validate the accuracy of simulated results, this model was applied to the controlled environment chamber that had been tested in 1998 by Chung KC. The comparison of predicted concentrations by this study with measured concentrations by the Chung KC indicated that the average deviations were 2.66, 3.35, and 3.15% for zone 1, zone 2, and zone 3, respectively. Also, this model was applied to a working plant with four zones. Thus, the results of contaminant concentration versus time were predicted according to the schedule of the openings operation, and case studies were done for four cases of the openings operation to investigate the interaction of airflow and contaminant concentration. The results indicated that opening operation schedules had a significant effect on contaminant removal efficiency. Therefore, this model might be able to apply for the design of ventilation schedules to control contaminants optimally.

REMEDIATION OF GROUNDWATER CONTAMINATED WITH BENZENE (LNAPL) USING IN-SITU AIR SPARGING

  • Reddy, Krishna R.
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.11-24
    • /
    • 2003
  • This paper presents the results of laboratory investigation performed to study the role of different air sparging system parameters on the removal of benzene from saturated soils and groundwater. A series of one-dimensional experiments was conducted with predetermined contaminant concentrations and predetermined injected airflow rates and pressures to investigate the effect of soil type and the use of pulsed air injection on air sparging removal efficiency. On the basis of these studies, two-dimensional air sparging remediation systems were investigated to determine the effect of soil heterogeneity on the removal of benzene from three different homogeneous and heterogeneous soil profiles. This study demonstrated that the grain size of the soils affects the air sparging removal efficiency. Additionally, it was observed that pulsed air injection did not offer any appreciable enhancement to contaminant removal for the coarse sand; however, substantial reduction in system operating time was observed for fine sand. The 2-D experiments showed that air injected in coarse sand profiles traveled in channels within a parabolic zone. In well-graded sand the zone of influence was found to be wider due to high permeability and increased tortuosity of this soil type. The influence zone of heterogeneous soil (well-graded sand between coarse sand) showed the hybrid airflow patterns of the individual soil test. Overall, the mechanism of contaminant removal using air sparging from different soil conditions have been determined and discussed.

  • PDF

엑사이머 레이저를 이용한 웨이퍼 크리닝에 관한 고찰 (The Study on Wafer Cleaning Using Excimer Laser)

  • 윤경구;김재구;이성국;최두선;신보성;황경현;정재경
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.743-746
    • /
    • 2000
  • The removal of contaminants of silicon wafers has been investigated by various methods. Laser cleaning is the new dry cleaning technique to replace wafer wet cleaning in the near future. A dry laser cleaning uses inert gas jet to remove contaminant particles lifted off by the action of a KrF excimer laser. A laser cleaning model is developed to simulate the cleaning process and analyze the influence of contaminant particles and experimental parameters on laser cleaning efficiency. The model demonstrates that various types of submicrometer-sized particles from the front sides of silicon wafer can be efficiently removed by laser cleaning. The laser cleaning is explained by a particle adhesion model. including van der Waals forces and hydrogen bonding, and a particle removal model involving rapid thermal expansion of the substrate due to the thermoelastic effect. In addition, the experiment of wafer laser cleaning using KrF excimer laser was conducted to remove various contaminant particles.

  • PDF

Monte Carlo 모델을 이용한 웨이퍼 상 오염입자의 세정효율 예측 (Prediction of particle removal efficiency of contaminant particles on wafer using Monte Carlo model)

  • 이승욱;이동근
    • 한국입자에어로졸학회지
    • /
    • 제20권3호
    • /
    • pp.103-114
    • /
    • 2024
  • Liquid-spray cleaning has recently been considered an eco-friendly cleaning method in the semiconductor industry because it efficiently cleans contaminated wafers without using any chemicals, relying instead on direct momentum transfer through dropwise impaction. Previous researches are mainly divided into two groups, such as modelling studies predicting the cleaning effect of single-droplet impact and experimental works for measuring particle removal efficiency (PRE) that essentially accompanies multiple droplet impacts. Here, we developed a Monte Carlo model to connect the single-droplet based model to the ensemble effect of multiple droplet impacts in real cleaning experiments, and thereby predict the PREs from the impaction conditions of droplets and the diameters of target particles. Additionally, we developed a two-fluid supersonic nozzle system, capable of spraying 10-60 ㎛ droplets under control of impact velocity, with aims to validate the model predictions of PREs for 15-130 nm contaminant particles on a Si wafer. We confirmed that the model predictions are in agreement with the experimental data within 7% and the cleaning time needs to be controlled for ensuring the efficient removal of particles.

토양세척법과 동전기 정화 기술을 이용한 중금속 오염지반의 원위치 정화

  • 김병일;한상재;이군택;김수삼
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.199-202
    • /
    • 2004
  • In this study the field-scale tests were performed in which in-situ E/K remediation technologies were applied, and then the results were present. For traditional E/K remediation method the efficiency of remediation is not large, but the enhanced method with citric acid significantly increases the removal efficiency. Also EDTA, reported as a good enhancement agent for removal of heavy metals, is similar to that of citric acid. Therefore citric acid is preferred rather than EDTA in view of the cost on the contaminant removal per unit concentration.

  • PDF

Effect of Electrolyte Concentration on Surfactant-Enhanced Electrokinetic Removal of Phenanthrene

  • 이유진;박지연;김상준;양지원
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.346-349
    • /
    • 2004
  • Surfactant-enhanced electrokinetic (EK) process was investigated to remove polycyclic aromatic hydrocarbons (PAHs) from low-permeable soils. Phenanthrene and kaolinite were selected as a representative PAH and a model soil, respectively. A nonionic surfactant Tergitol 15-S-12 was applied to improve the solubility of phenanthrene and sodium chloride was used as an electrolyte at the various concentrations from 0.001 to 0.1M. The addition of electrolyte affected both the removal efficiency and operation cost. When electrolyte was introduced, the electrical potential gradient became low and thus power consumption was reduced. However, as electrolyte concentration increased, the electroosmotic flow also decreased, so the removal efficiency of contaminant decreased. Therefore, the removal efficiency and power consumption should be considered simultaneously to determine the iptimum surfactant concentration, so a relatively lower concentration of electrolyte than certain value is desired.

  • PDF

극저온 $CO_2$ 세정공정의 세정인자 최적화 (Optimization of Cleaning Parameters in Cryogenic $CO_2$ Cleaning Process)

  • 이성훈;석종원;김필기;오승희;석종혁;오병준
    • 한국정밀공학회지
    • /
    • 제25권9호
    • /
    • pp.109-115
    • /
    • 2008
  • The cleaning process of contaminant particles adhering to the microchips, integrated circuits (ICs) or the like is essential in modern microelectronics industry. In the cleaning process particularly working with the application of inert gases, the removal of contaminant particles of submicron scale is very difficult because the particles are prone to reside inside the boundary layer of the working fluid, The use of cryogenic $CO_2$ cleaning method is increasing rapidly as an alternative to solve this problem. In contrast to the merits of high efficiency of this process in the removal of minute particles compared to the others, even fundamental parametric studies for the optimal process design in this cleaning process are hardly done up to date, In this study, we attempted to measure the cleaning efficiency with the variations of some principal parameters such as mass flow rate, injection distance and angle, and tried to draw out optimal cleaning conditions by measuring and evaluating an effective cleaning width called $d_{50}$.