DOI QR코드

DOI QR Code

Prediction of particle removal efficiency of contaminant particles on wafer using Monte Carlo model

Monte Carlo 모델을 이용한 웨이퍼 상 오염입자의 세정효율 예측

  • Seungwook Lee (School of Mechanical Engineering, Pusan National University) ;
  • Donggeun Lee (School of Mechanical Engineering, Pusan National University)
  • 이승욱 (부산대학교 기계공학부) ;
  • 이동근 (부산대학교 기계공학부)
  • Received : 2024.08.02
  • Accepted : 2024.09.16
  • Published : 2024.09.30

Abstract

Liquid-spray cleaning has recently been considered an eco-friendly cleaning method in the semiconductor industry because it efficiently cleans contaminated wafers without using any chemicals, relying instead on direct momentum transfer through dropwise impaction. Previous researches are mainly divided into two groups, such as modelling studies predicting the cleaning effect of single-droplet impact and experimental works for measuring particle removal efficiency (PRE) that essentially accompanies multiple droplet impacts. Here, we developed a Monte Carlo model to connect the single-droplet based model to the ensemble effect of multiple droplet impacts in real cleaning experiments, and thereby predict the PREs from the impaction conditions of droplets and the diameters of target particles. Additionally, we developed a two-fluid supersonic nozzle system, capable of spraying 10-60 ㎛ droplets under control of impact velocity, with aims to validate the model predictions of PREs for 15-130 nm contaminant particles on a Si wafer. We confirmed that the model predictions are in agreement with the experimental data within 7% and the cleaning time needs to be controlled for ensuring the efficient removal of particles.

Keywords

Acknowledgement

이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

References

  1. Banerjee, S., & Campbell, A. (2005). Principles and mechanisms of sub-micrometer particle removal by CO2 cryogenic technique. Journal of Adhesion Science and Technology, 19(9), 739-751. https://doi.org/10.1163/1568561054867828
  2. Choudhury, R., Choi, J., Yang, S., Kim, Y.-J., & Lee, D. (2017). Maximum spreading of liquid drop on various substrates with different wettabilities. Applied Surface Science, 415, 149-154. https://doi.org/10.1016/j.apsusc.2016.12.195
  3. Eitoku, A., Vos, R., Snow, J., Sato, M., Hirae, S., & Nakajima, K. (2003). Removal of Small (<100-nm) Particles and Metal Contamination in Single-Wafer Cleaning Tool. Solid State Phenomena, 92, 157-160. https://doi.org/10.4028/www.scientific.net/ssp.92.157
  4. Eranna, G. (2014). Crystal Growth and Evaluation of Silicon for VLSI and ULSI (pp. 347). CRC Press. https://doi.org/10.1201/b17812
  5. Hattori, T., Hirano, H., Osaka, T., & Kuniyasu, H. (2007). Environmentally Benign Single-Wafer Spin Cleaning Using Ultra-Diluted HF/Nitrogen Jet Spray Without Causing Structural Damage and Material Loss. IEEE Transactions on Semiconductor Manufacturing, 20(3), 252-258. https://doi.org/10.1109/TSM.2007.901845
  6. Hirano, H., Sato, K., Osaka, T., Kuniyasu, H., & Hattori, T. (2006). Damage-Free Ultradiluted HF/Nitrogen Jet Spray Cleaning for Particle Removal with Minimal Silicon and Oxide Loss. Electrochemical and Solid-State Letters, 9(2), G62-G65. https://doi.org/10.1149/1.2153857
  7. Hirota, Y., Kanno, I., Fujiwara, K., Nagayasu, H., & Shimose, S. (2005). Damage-free wafer cleaning by water and gas mixture jet. In IEEE International Symposium on Semiconductor Manufacturing (ISSM 2005) (pp. 219-222). https://doi.org/10.1149/1.2153857
  8. Hong, J., Niu, X., Liu, Y., He, Y., Zhang, B., Wang, J., Han, L., Yan, C., & Zhang, J. (2016). Effect of a novel chelating agent on defect removal during post-CMP cleaning. Applied Surface Science, 378, 239-244. https://dx.doi.org/10.1016/j.apsusc.2016.03.230
  9. Huang, Y., Guo, D., Lu, X., Luo, J. (2011). Mechanisms for nanoparticle removal in brush scrubber cleaning. Applied Surface Science, 257(7), 3055-3062. https://doi.org/10.1016/j.apsusc.2010.10.115
  10. Iwasaki, A., Higuchi, A., Komori, K., Sato, M., & Shirakawa, H. (2015). Dual-Fluid Spray Process for Particle and Fluorocarbon-Polymer Removal in BEOL Applications. ECS Transactions, 69(8), 199-205. https://doi.org/10.1149/06908.0199ecst
  11. Kim, J., Shin, J., & Lee, D. (2022). Microstructral transition of nanoparticle deposits from multiple dendrites to compact layer. Journal of Aerosol Science, 159, 105876. https://doi.org/10.1016/j.jaerosci.2021.105876
  12. Kim, J., & Lee, D. (2023). Evolution of pore structure in nanoparticle deposits from unimodal to bimodal pore size distributions: Focus on structural features of dendritic structures. Journal of Aerosol Science, 173, 106227. https://doi.org/10.1016/j.jaerosci.2023.106227
  13. Kondo, T., & Ando, K. (2019). Simulation of high-speed droplet impact against a dry/wet rigid wall for understanding the mechanism of liquid jet cleaning. Physics of Fluids, 31, 013303. https://doi.org/10.1063/1.5079282
  14. Kern, W. (1990). The evolution of silicon wafer cleaning technology. Journal of the Electrochemical Society, 137(6), 1887. https://doi.org/10.1149/1.2086825
  15. Lee, H., You, S., Pikhitsa, P. V., Kim, J., Kwon, S., Woo, C. G., & Choi, M. (2011). Three-dimensional assembly of nanoparticles from charged aerosols. Nano Letters, 11, 119-124. https://doi.org/10.1021/nl103787k
  16. Lee, J. H., Ryu, H. Y., Hwang, J. K., Yerriboina, N. P., Kim, T. G., Hamada, S., Wada, Y., Hiyama, H., & Park, J. G. (2019). A Breakthrough Method for the Effective Conditioning of PVA Brush Used for Post-CMP Process. ECS Journal of Solid State Science and Technology, 8(6), 307-312. https://doi.org/10.1149/2.0111906jss
  17. Liu, H., & Benjamin, Y. (1996). Contamination Control in Semiconductor Manufacturing and Particles Deposition on Wafer Surfaces. In H.E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newman, & M. J. Soilleau (Eds.), SPIE Proceedings, 2714, 685-86. https://doi.org/10.1117/12.240427
  18. Liu, Y. H., Maruyama, H., & Matsusaka, S. (2011). Effect of Particle Impact on Surface Cleaning Using Dry Ice Jet. Aerosol Science and Technology, 45(12), 1519-1527. https://doi.org/10.1080/02786826.2011.603769
  19. Ock, Y., Kim, J., Choi, I., Kim, D. S., Choi, M., & Lee, D. (2018). Size-independent unipolar charging of nanoparticles at high concentrations using vapor condensation and its application for improving DMA size-selection efficiency. Journal of Aerosol Science, 121, 38-53. https://doi.org/10.1016/j.jaerosci.2018.04.007
  20. Ohmi, T., Miyashita, M., Itano, M., Imaoka, T., & Kawanabe, I. (1992). Dependence of thin-oxide films quality on surface microroughness. IEEE Transactions on Electron Devices, 39(3), 537-545. https://doi.org/10.1109/16.123475
  21. Reinhardt, K. A., & Kern, W. (2018). Handbook of Silicon Wafer Cleaning Technology (3rd ed.). William Andrew Publishing. https://doi.org/10.1016/B978-0-323-51084-4.00001-0
  22. Seike, Y., Miyachi, K., Shibata, T., Kobayashi, Y., Kurokawa, S., & Do, T. (2010). Silicon Wafer Cleaning Using New Liquid Aerosol with Controlled Droplet Velocity and Size by Rotary Atomizer Method. Japanese Journal of Applied Physics, 49, 066701. https://doi.org/10.1143/JJAP.49.066701
  23. Snow, J. T., Sato, M., & Tanaka, T. (2013). Developments in Surface Contamination and Cleaning. In R. Kohli & K. L. Mittal (Eds.), Dual-Fluid Spray Cleaning Technique for Particle Removal (pp. 107). William Andrew Publishing. https://doi.org/10.1016/B978-1-4377-7879-3.00003-0
  24. Teng, Y., Cui, H., He, X., Li, J., Han, J., Jiang, Q., Liu, X., Zhao, C., Wu, Y. (2016). Damage free removal of nano-particles with dual-fluid spray nozzle cleaning. In China Semiconductor Technology International Conference (CSTIC) 2016 (pp. 1-3). https://doi.org/10.1109/CSTIC.2016.7463993
  25. Toscano, C., & Ahmadi, G. (2003). Particle removal mechanisms in cryogenic surface cleaning. The Journal of Adhesion, 79, 175-201. https://doi.org/10.1080/00218460309570
  26. Watanabe, M., Sanada, T., Hayashida, A., & Isago, Y. (2009). Cleaning Technique Using High-Speed Steam-Water Mixed Spray. Solid State Phenomena, 145-146, 43-46. https://doi.org/10.1080/00218460309570
  27. Wei, Y., Li, T., Zhou, X., & Zhang, Z. (2020). Time-resolved measurement of the near-nozzle air entrainment of high-pressure diesel spray by high-speed micro-PTV technique. Fuel, 268, 117343. https://doi.org/10.1016/j.fuel.2020.117343
  28. Xu, K., Pichler, S., Wostyn, K., Cado, G., Springer, C., Gale, G. W., Dalmer, M., Mertens, P. W., Bearda, T., Gaulhofer, E., & Podlesnik, D. (2009). Removal of Nano-Particles by Aerosol Spray: Effect of Droplet Size and Velocity on Cleaning Performance. Solid State Phenomena, 145-146, 31-34. https://doi.org/10.4028/www.scientific.net/SSP.145-146.31
  29. Zantye, P. B., Kumar, A., & Sikder, A. K. (2004). Chemical mechanical planarization for microelectronics applications. Materials Science and Engineering: R: Reports, 45(3-6), 89-220. https://doi.org/10.1016/j.mser.2004.06.002