Acknowledgement
이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.
References
- Banerjee, S., & Campbell, A. (2005). Principles and mechanisms of sub-micrometer particle removal by CO2 cryogenic technique. Journal of Adhesion Science and Technology, 19(9), 739-751. https://doi.org/10.1163/1568561054867828
- Choudhury, R., Choi, J., Yang, S., Kim, Y.-J., & Lee, D. (2017). Maximum spreading of liquid drop on various substrates with different wettabilities. Applied Surface Science, 415, 149-154. https://doi.org/10.1016/j.apsusc.2016.12.195
- Eitoku, A., Vos, R., Snow, J., Sato, M., Hirae, S., & Nakajima, K. (2003). Removal of Small (<100-nm) Particles and Metal Contamination in Single-Wafer Cleaning Tool. Solid State Phenomena, 92, 157-160. https://doi.org/10.4028/www.scientific.net/ssp.92.157
- Eranna, G. (2014). Crystal Growth and Evaluation of Silicon for VLSI and ULSI (pp. 347). CRC Press. https://doi.org/10.1201/b17812
- Hattori, T., Hirano, H., Osaka, T., & Kuniyasu, H. (2007). Environmentally Benign Single-Wafer Spin Cleaning Using Ultra-Diluted HF/Nitrogen Jet Spray Without Causing Structural Damage and Material Loss. IEEE Transactions on Semiconductor Manufacturing, 20(3), 252-258. https://doi.org/10.1109/TSM.2007.901845
- Hirano, H., Sato, K., Osaka, T., Kuniyasu, H., & Hattori, T. (2006). Damage-Free Ultradiluted HF/Nitrogen Jet Spray Cleaning for Particle Removal with Minimal Silicon and Oxide Loss. Electrochemical and Solid-State Letters, 9(2), G62-G65. https://doi.org/10.1149/1.2153857
- Hirota, Y., Kanno, I., Fujiwara, K., Nagayasu, H., & Shimose, S. (2005). Damage-free wafer cleaning by water and gas mixture jet. In IEEE International Symposium on Semiconductor Manufacturing (ISSM 2005) (pp. 219-222). https://doi.org/10.1149/1.2153857
- Hong, J., Niu, X., Liu, Y., He, Y., Zhang, B., Wang, J., Han, L., Yan, C., & Zhang, J. (2016). Effect of a novel chelating agent on defect removal during post-CMP cleaning. Applied Surface Science, 378, 239-244. https://dx.doi.org/10.1016/j.apsusc.2016.03.230
- Huang, Y., Guo, D., Lu, X., Luo, J. (2011). Mechanisms for nanoparticle removal in brush scrubber cleaning. Applied Surface Science, 257(7), 3055-3062. https://doi.org/10.1016/j.apsusc.2010.10.115
- Iwasaki, A., Higuchi, A., Komori, K., Sato, M., & Shirakawa, H. (2015). Dual-Fluid Spray Process for Particle and Fluorocarbon-Polymer Removal in BEOL Applications. ECS Transactions, 69(8), 199-205. https://doi.org/10.1149/06908.0199ecst
- Kim, J., Shin, J., & Lee, D. (2022). Microstructral transition of nanoparticle deposits from multiple dendrites to compact layer. Journal of Aerosol Science, 159, 105876. https://doi.org/10.1016/j.jaerosci.2021.105876
- Kim, J., & Lee, D. (2023). Evolution of pore structure in nanoparticle deposits from unimodal to bimodal pore size distributions: Focus on structural features of dendritic structures. Journal of Aerosol Science, 173, 106227. https://doi.org/10.1016/j.jaerosci.2023.106227
- Kondo, T., & Ando, K. (2019). Simulation of high-speed droplet impact against a dry/wet rigid wall for understanding the mechanism of liquid jet cleaning. Physics of Fluids, 31, 013303. https://doi.org/10.1063/1.5079282
- Kern, W. (1990). The evolution of silicon wafer cleaning technology. Journal of the Electrochemical Society, 137(6), 1887. https://doi.org/10.1149/1.2086825
- Lee, H., You, S., Pikhitsa, P. V., Kim, J., Kwon, S., Woo, C. G., & Choi, M. (2011). Three-dimensional assembly of nanoparticles from charged aerosols. Nano Letters, 11, 119-124. https://doi.org/10.1021/nl103787k
- Lee, J. H., Ryu, H. Y., Hwang, J. K., Yerriboina, N. P., Kim, T. G., Hamada, S., Wada, Y., Hiyama, H., & Park, J. G. (2019). A Breakthrough Method for the Effective Conditioning of PVA Brush Used for Post-CMP Process. ECS Journal of Solid State Science and Technology, 8(6), 307-312. https://doi.org/10.1149/2.0111906jss
- Liu, H., & Benjamin, Y. (1996). Contamination Control in Semiconductor Manufacturing and Particles Deposition on Wafer Surfaces. In H.E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newman, & M. J. Soilleau (Eds.), SPIE Proceedings, 2714, 685-86. https://doi.org/10.1117/12.240427
- Liu, Y. H., Maruyama, H., & Matsusaka, S. (2011). Effect of Particle Impact on Surface Cleaning Using Dry Ice Jet. Aerosol Science and Technology, 45(12), 1519-1527. https://doi.org/10.1080/02786826.2011.603769
- Ock, Y., Kim, J., Choi, I., Kim, D. S., Choi, M., & Lee, D. (2018). Size-independent unipolar charging of nanoparticles at high concentrations using vapor condensation and its application for improving DMA size-selection efficiency. Journal of Aerosol Science, 121, 38-53. https://doi.org/10.1016/j.jaerosci.2018.04.007
- Ohmi, T., Miyashita, M., Itano, M., Imaoka, T., & Kawanabe, I. (1992). Dependence of thin-oxide films quality on surface microroughness. IEEE Transactions on Electron Devices, 39(3), 537-545. https://doi.org/10.1109/16.123475
- Reinhardt, K. A., & Kern, W. (2018). Handbook of Silicon Wafer Cleaning Technology (3rd ed.). William Andrew Publishing. https://doi.org/10.1016/B978-0-323-51084-4.00001-0
- Seike, Y., Miyachi, K., Shibata, T., Kobayashi, Y., Kurokawa, S., & Do, T. (2010). Silicon Wafer Cleaning Using New Liquid Aerosol with Controlled Droplet Velocity and Size by Rotary Atomizer Method. Japanese Journal of Applied Physics, 49, 066701. https://doi.org/10.1143/JJAP.49.066701
- Snow, J. T., Sato, M., & Tanaka, T. (2013). Developments in Surface Contamination and Cleaning. In R. Kohli & K. L. Mittal (Eds.), Dual-Fluid Spray Cleaning Technique for Particle Removal (pp. 107). William Andrew Publishing. https://doi.org/10.1016/B978-1-4377-7879-3.00003-0
- Teng, Y., Cui, H., He, X., Li, J., Han, J., Jiang, Q., Liu, X., Zhao, C., Wu, Y. (2016). Damage free removal of nano-particles with dual-fluid spray nozzle cleaning. In China Semiconductor Technology International Conference (CSTIC) 2016 (pp. 1-3). https://doi.org/10.1109/CSTIC.2016.7463993
- Toscano, C., & Ahmadi, G. (2003). Particle removal mechanisms in cryogenic surface cleaning. The Journal of Adhesion, 79, 175-201. https://doi.org/10.1080/00218460309570
- Watanabe, M., Sanada, T., Hayashida, A., & Isago, Y. (2009). Cleaning Technique Using High-Speed Steam-Water Mixed Spray. Solid State Phenomena, 145-146, 43-46. https://doi.org/10.1080/00218460309570
- Wei, Y., Li, T., Zhou, X., & Zhang, Z. (2020). Time-resolved measurement of the near-nozzle air entrainment of high-pressure diesel spray by high-speed micro-PTV technique. Fuel, 268, 117343. https://doi.org/10.1016/j.fuel.2020.117343
- Xu, K., Pichler, S., Wostyn, K., Cado, G., Springer, C., Gale, G. W., Dalmer, M., Mertens, P. W., Bearda, T., Gaulhofer, E., & Podlesnik, D. (2009). Removal of Nano-Particles by Aerosol Spray: Effect of Droplet Size and Velocity on Cleaning Performance. Solid State Phenomena, 145-146, 31-34. https://doi.org/10.4028/www.scientific.net/SSP.145-146.31
- Zantye, P. B., Kumar, A., & Sikder, A. K. (2004). Chemical mechanical planarization for microelectronics applications. Materials Science and Engineering: R: Reports, 45(3-6), 89-220. https://doi.org/10.1016/j.mser.2004.06.002