• Title/Summary/Keyword: Container crane control

Search Result 143, Processing Time 0.027 seconds

Design of GA-Fuzzy Controller for Position Control and Anti-Swing in Container Crane (컨테이너 크레인의 위치제어 및 흔들림 억제를 위한 GA-퍼지 제어기 설계)

  • 허동렬
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.16-21
    • /
    • 2000
  • In this paper we design a GA-fuzzy controller for position control and anti-swing at the destination point. Applied genetic algorithm is used to complement the demerit such as the difficulty of the component selection of fuzzy controller namely scaling factor membership function and control rules. lagrange equation is used to represent the motion equation of trolley and load in order to obtain mathematical modelling. Simulation results show that the proposed control technique is superior to a conventional optimal control in destination point moving and modification.

  • PDF

Design of a Fuzzy Controller for Position Control and Anti-Swing in Container Crane Systems Using Genetic Algorithms (유전알고리즘을 이용한 컨테이너 크레인 시스템의 위치제어 및 흔들림 억제를 위한 퍼지 제어기 설계)

  • 정형환;허동렬;오경근;주석민;안병철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.53-60
    • /
    • 2000
  • In this paper, we design a GA-fuzzy controller for position control and anti-swing at the destination point. A genetic algorithm is used to complement the demerits such as the difficulty of the component selection of the fuzzy controller, namely, scaling factors, membership functions and control rules. Lagrange equation is used to represent the motion equation of trolley and load in order to obtain mathematical modelling. Simulation results show that the proposed control technique is superior to a conventional optimal control in destination point moving and modification.

  • PDF

Oscillation Motion Control of Gantry Crane System with Arm for Anti-Sway (Anti-sway용 암을 가진 겐트리 크레인의 흔들림저감 제어)

  • Kim, H.S.;Park, H.S.;Lee, D.H.;Park, J.H.;Kim, S.B.
    • Journal of Power System Engineering
    • /
    • v.2 no.1
    • /
    • pp.73-79
    • /
    • 1998
  • In practical fields, the sway of crane systems leads to extra stress to the crane structure during the transporting operation and it is in close connection with its life. Usually, when we operate the cranes with high speed and manual control, the sway motion is irreducible. In this paper, a new type of crane system is proposed to avoid the irreducible sway of the crane systems. The proposed system is composed of mechanical arm with function of anti-sway based on conventional line system. By the anti-sway arm, we can realize to prevent the sway of the container box but cannot avoid the oscillation for the overall body of the crane. So, a controller design method to solve the above stated problem must be considered. The problem is solved by adopting the velocity pattern control methods of trapezoidal and curve types and its effectiveness is proved through experimental results.

  • PDF

Steering Control of Unmaned Container Transporter Using MRAC (MRAC 기법을 이용한 무인 컨테이너 운송차량의 조향 제어)

  • Lee, Y.J.;Huh, N.;Choi, J.Y.;Lee, K.S.;Lee, M.H.
    • Journal of Korean Port Research
    • /
    • v.14 no.3
    • /
    • pp.291-301
    • /
    • 2000
  • T his paper presents the lateral and longitudinal control algorithm for the driving of a 4WS AGV(Automated Guided Vehicle). The control law to the lateral and longitudinal control of the AGV includes adaptive agin tuning ability, that is the controller gain of the gravity compensated PD controller can be changed on a real-time. The gain tuning law is derived from the Lyapunov direct method using the output error of the reference model and the actual model, And to show the performance of the presented lateral and longitudinal control algorithm, we simulate toe nonlinear AGV equations of the motion by deriving the Newton-Euler Method, The read path is from quay yard area to docking position in loading yard area. The quay yard area is where the quay crane loads the container to the AGV and the docking position is where the container is transferred to the gantry crane. The road types are constructed in a straight line and J-turn. When driving the straight line, the driving velocity is 6㎧ and the J-turn is 3㎧.

  • PDF

An Anti-Sway Control System Design Based on Simultaneous Optimization Design Approach (동시최적화 설계기법을 이용한 항만용 크레인의 흔들림 제어계 설계)

  • Kim, Young-Bok;Moon, Duk-Hong;Yang, Joo-Ho;Chae, Gyu-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.66-73
    • /
    • 2005
  • The sway motion control problem of a container hanging on the trolley is considered in this paper. In the container crane control problem, the main issue involves suppressing the residual swing motion of the container at the end of acceleration, during deceleration, or for an unexpected disturbance input. For this problem, in general, many trolley motion control strategies are introduced and applied. In this paper, we introduce and synthesize a swing motion control system, in which a small auxiliary mass is installed on the spreader. In this control system, the actuator reacting against the auxiliary mass applies inertial control forces to the container to reduce the swing motion in the desired manner. In many studies, the controllers used to suppress the vibration have been synthesized for the given mathematical model of plants. In many cases, the designers have not been able to utilize the degree of freedom to adjust the structural parameters for the control object. To overcome this problem, so called "Structure/Control Simultaneous Method" is used. From this, in this paper the simultaneous design method is used to achieve optimal system performance. And the experimental result shows that the proposed control strategy is useful, to the case of that the controlled system is exposed to the uncertainties and, robust to disturbances like wind.

An Autonomous Traveling Control of Crane Using Humoral Immune Algorithm (생체면역알고리즘을 이용한 크레인의 자율주행 제어에 관한 연구)

  • Lee, K.S.;Lee, Y.J.
    • Journal of Power System Engineering
    • /
    • v.10 no.3
    • /
    • pp.88-96
    • /
    • 2006
  • While the crane system operate in port, one of main objective is to transport containers to the goal position as soon as possible. Because this is one of the biggest problem in terms of productivity of port, the container crane is operated by an expert operator until now. However recently an automatic control system with high performance is required to improve the performance of the crane system and to make high productivity. Therefore we developed an optimal controller based on Humoral Immune Algorithm with PID controller. The proposed system has a real time structure and can improve the performance such as anti-sway problem. Some computer simulations are implemented to assess the characteristics of the proposed controller.

  • PDF

Development of Real-time Condition Monitoring System for Container Cranes (컨테이너 크레인 실시간 설비진단 시스템 개발)

  • Jung, D.U.;Choo, Y.Y.
    • Journal of Power System Engineering
    • /
    • v.12 no.6
    • /
    • pp.18-23
    • /
    • 2008
  • This paper describes development of real-time condition monitoring system to observe state of a container crane in a port. To analyze the state of a crane, the strength and the direction of wind are measured with sensors along with the load resulted a crane at the moment. The measured signals are processed by especially developed conditioning board and converted into digital data. Measured data are analyzed to define the state of the crane at an indicator. For transmission of these data to the indicator, we implemented wireless sensor network based on IEEE 802.15.4 MAC(Media Access Control) protocol and Bluetooth network protocol. To extend the networking distance between the indicator and sensor nodes, the shortest path routing algorithm was applied for WSN(Wireless Sensor Network) networks. The indicator sends the state information of the crane to monitoring server through IEEE 802.11 b wireless LAN(Local Area Network). Monitoring server decides whether alarm should be issued or not. The performance of developed WSN and Bluetooth network were evaluated and analyzed in terms of communication delay and throughput.

  • PDF

Anti-sway System for Automatic Container Terminal (자동화 컨테이너 터미널용 Anti-Sway 시스템)

  • 박경택;박찬훈;김두형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.428-431
    • /
    • 2002
  • Yard cranes are very useful equipments for handling of heavy containers. But rope-driven yard cranes must have a little of sway and skew motion because ropes are passive mechanical device. So many researches have been concentrated on anti-sway algorithm controlling trolley speed. But control algorithm of trolley speed is not practical in windy weather. In this paper, we are going to propose a new structure for anti-sway. This structure uses aux. ropes. The control strategy with auxiliary rope is very useful to sway control of yard crane because rope length is shorter than quay-side container cranes. In this paper, we derive equations of motion of trolley system which have anti-sway controller to use auxiliary rope. And main schemes are introduced and explained briefly.

  • PDF

A Study on Characteristics of Driving Control of Crane (크레인의 구동제어 특성에 관한 연구)

  • 이형우;박찬훈;김두형;박경택;이만형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.545-550
    • /
    • 2001
  • This paper studied on the lateral motion and yaw motion of the gantry crane that is used for the automated container terminal. Though several problems are occurred in driving of the gantry crane, they are solved by the motion by the operators. But, if the gantry crane is unmanned, it is automatically controlled without any operator. There are two types, cone and flat type in driving wheel shape. In cone type, the lateral vibration and yaw motion of crane are issued. In flat type, the collision between wheel-flange and rail or the fitting between wheel-flanges and rail is issued. Especially, the collision between wheel-flange and rail is a very critical problem in driving of unmanned gantry crane. To bring a solution to the problems, the lateral and yaw dynamic equations of the driving mechanism of two driving wheels are derived. Then, we investigate the driving characteristics of gantry crane. In this study, the proposed controller, based on Model Based Controller, is used to control the lateral displacement and yaw angle of the gantry crane. And the availability of the proposed controller is showed through the comparison with the result of the proposed controller and PD controller. The simulation results of the driving mechanism, using the Runge-Kutta Method that is one of the numerical analysis methods, are presented in this paper.

  • PDF

Command Shaping Control for Limiting the Transient Sway Angle of Crane Systems

  • Hong, Kyung-Tae;Huh, Chang-Do;Hong, Keum-Shik
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.43-53
    • /
    • 2003
  • A modified command shaping control to reduce residual vibrations at a target position and to limit the sway angle of the payload during traveling for container crane systems is investigated. When the maneuvering time is minimized, a large transient amplitude and steady state oscillations may occur inherently. Since a large swing of the payload during the transfer is dangerous, the control objective is to transfer a payload to the desired place as quickly as possible while limiting the swing angle of the payload during the transfer. The conventional shapers have been enhanced by adding one more constraint to limit intermediate sway angles of the payload. The developed method is shown to be more effective than other conventional shapers for prevention of an excessive transient sway. Computer simulation results are provided.