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Command Shaping Control for Limiting the Transient Sway
Angle of Crane Systems

Kyung-Tae Hong, Chang-Do Huh, and Keum-Shik Hong

Abstract: A modified command shaping control to reduce residual vibrations at a target position
and to limit the sway angle of the payload during traveling for container crane systems is inves-
tigated. When the maneuvering time is minimized, a large transient amplitude and steady state
oscillations may occur inherently. Since a large swing of the payload during the transfer is dan-
gerous, the control objective is to transfer a payload to the desired place as quickly as possible
while limiting the swing angle of the payload during the transfer. The conventional shapers have
been enhanced by adding one more constraint to limit intermediate sway angles of the payload.
The developed method is shown to be more effective than other conventional shapers for pre-
vention of an excessive transient sway. Computer simulation results are provided.

Keywords: Crane system, command shaping control, feedforward control, time-optimal control,

residual vibration, robustness.

1. INTRODUCTION

The position control problem for oscillatory sys-
tems, which pursues the minimal residual vibration
while achieving the minimal control time, has been
investigated for over a decade. However, when the
maneuvering time is minimized, a large transient am-
plitude and steady state oscillations may occur. A par-
ticular control objective for the systems with oscilla-
tory modes often requires limited vibrations both dur-
ing and after the maneuver. Residual vibrations
should be minimized in order to achieve precise mo-
tions of a flexible mechanical system. In most cases,
the residual vibration at the end of a movement is an
undesirable phenomenon that limits the control per-
formance of the system. The effective use of oscilla-
tory systems can be achieved only when such vibra-
tion can be properly handled. As a result, there is ac-
tive research interest in finding methods that will
eliminate vibration for a variety of mechanical sys-
tems.

To reduce vibrations in the system considered, the
following four approaches are normally attempted in
the literature: adding damping to the structure, in-
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creasing the stiffness of the system considered, look-
ing for a precise model and designing a delicate con-
troller, and deriving a control input which does not
cause vibrations. The first two approaches require an
addition of hardware to the system. The third ap-
proach is not generally used because a specific con-
troller depends on the specific model developed.
Hence, the generation of a shaped command signal
that does not excite unwanted dynamics is often the
most attractive option. The command shaping method
is getting more attention in industry because it is rela-
tively simple to implement.

The efficiency of cargo handling work at a port or
at an industry field depends largely on the operation
of cranes. For example, when a ship is unloaded, con-
tainers are first transferred from the ship to a waiting
truck by a container crane as shown in Fig. 1. The
truck then carries the container to an open storage
area, where another crane stacks the container to a
pre-assigned place. The bottleneck of this cycle lies in
the transfer of the containers from the ship to the
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Fig. 1. A container crane system.
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truck. Therefore, minimizing this transfer time will
bring about a large cost saving. Since a large swing of
the container load during the transfer is dangerous,
the problem is to transfer a container to the desired
place as quickly as possible while minimizing the
swing of the container during transfer as well as the
swing at the end of transfer.

If the swing of the container load is neglected, a
time-optimal rigid-body (TORB) command can be
easily calculated. However, TORB commands will
usually result in large amplitude oscillations of the
load. Skillful crane operators attempt to reduce vibra-
tion by making a deceleration oscillation that cancels
out the oscillation occurred during acceleration, or
they may brush the payload against obstacles to di-
minish the vibration.

When the swing is considered, a time-optimal
flexible-body (TOFB) command that results in zero
residual vibration can be generated [1]. Hoisting of
the load during the transverse motion of the trolley
increases the difficulty of generating the control input
because the system is nonlinear time-varying. If the
system model is linearized, then the associated fre-
quency is time-varying. Optimal controls based on a
nonlinear model are difficult in general [2]. One
method for developing optimal controls divides the
crane motion into five different sections [3]. The op-
timal speed reference trajectory, which minimizes a
quadratic cost function for each part, is then derived
and pieced together: Even when optimal commands
can be generated, implementation is usually impracti-
cal because the boundary conditions at the end of the
maneuver {(move distance) must be known at the start
of the move. When feedback is available, both robust
controllers and a combination of open- and closed-
loop controls are possible [4]. Six different velocity
patterns of trolley movement including trapezoidal,
stepped, and notched patterns were compared in
Hong et al. [5,6]. A two-stage control strategy that
combines a time-optimal traveling and a nonlinear

residual sway control was presented in Hong et al. [7].

A very interesting technique by Smith [§] proposes
the split of input excitation into several segments so
that the sum of all transient terms is equal to zero af-
ter the last excitation. This technique was referred to
as the Posicast technique. This work, however, lacks
the robustness to errors in the estimated damping and
frequency of the controlled system. Recently, the
Posicast technique, named as command shaping or
input shaping, has been re-illuminated by a group of
researchers at MIT and rigorous theory has been es-
tablished [9,10].

Considerable work has been done in recent years
on the topics of positioning and slewing using the
command shaping method. Time-optimal rest-to-rest
slewing of flexible systems has been investigated by
several researchers [11,12]. Examples of command

shaping applications include Cartesian robots [13],
industrial robots [14], and crane systems [15,16].
Flexible systems equipped with constant force actua-
tors can use a command shaping technique by switch-
ing the actuators on and off at appropriate times [17].

This paper presents a modified command shaping
control methodology to restrict the swing angle of the
payload within a specified value during the transfer as
well as to minimize the residual vibration at the end-
point. Adding one more constraint to limit the tran-
sient sway angle within a specified value using the
sway angle equation based on a linear time-invariant
system enhances the conventional design method. A
similar approach, limiting the magnitude of transient
motion, has been investigated by Singhose et al. [17],
but in their work the command profiles were based
upon on/off constant force actuators and a limitation
was set on the maximum acceleration, not on the
maximum velocity. In real situations, the system satu-
rations occur not only during acceleration but also in
achieving the maximum velocity. In this paper, the
command profiles are generated by convolving a
TORB command signal that satisfies given con-
straints and an appropriate shaper. Simulation results
of the conventional shapers and the proposed ones are
compared in terms of the amplitude of the transient
sway angle, residual sway distance, robustness in
natural frequency discrepancy, and traveling time.
The proposed method is easier to implement com-
pared with the conventional time-optimal control and
robust control schemes and does not require any
feedback signal. Rather than attempting to obtain ex-
actly zero residual vibration, which is practically im-
possible, this technique yields non-zero but low levels
of vibration.

The structure of this paper is as follows: In Section
2, the control problem of applying command shaping
control to a crane system is formulated. In Section 3,
the conventional command shaping control design
method is briefly reviewed. In Section 4, constraint
equations for restricting the intermediate sway angles
are derived. In Section 5, simulation results are pro-
vided. Finally, conclusions are stated in Section 6.

2. CONTROL PROBLEM FORMULATION

In this section, for the design of command shaping
control, a mathematical model for the crane system,
which is currently being used in the field, is formu-
lated. Path planning for moving the payload is per-
formed. Also, the hardware specifications of the crane
system and the control performance specifications are
given.

2.1. Crane system: modeling
Three different equations of motion about the crane
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system depicted in Fig. 2 can be derived. These are a
nonlinear time-varying system, a linear time-varying
(LTV) system, and a linear time-invariant (LTT) system.
(1) Nonlinear System

L(OO@) + 2L + g sin 8(1) = cos O(Du(r) , (1)

where L(t) is the time-varying rope length in meters,
€(t) is the sway angle in radian, g is the gravita-
tional acceleration, and u(r) is the acceleration of
the trolley, which is the control input.
(2) Linear Time-Varying System

If the sway angle 6(:) is small enough,
sin@(t) =6(t) and cosb(t) =1, then (1) can be lin-
earized as follows:

LO8(t) + 2L(OHO(1) + gB(t) = u(t) . (2)

(3) Linear Time-Invariant System

In this model, the hoisting is not considered. That
is, the rope length is fixed at a constant value. Then,
the simplest model of a container crane is derived as
follows:

LOW) + g0(1) = u(r) . (3)

2.2, Path planning

The cycle is divided into four paths as shown in
Fig. 2. The four paths are described separately for the
purpose of facilitating understanding of the semi-
automatic modes. In this paper, path BD is the control
range.
(1) Path AB: Hoisting up (manual mode)
(2) Path BC: Hoisting up and traveling of the trolley

(auto mode)

(3) Path CD: Traveling of the trolley (auto mode)
(4) Path DE: Hoisting down (manual mode)

2.3. Specifications of the crane

Specifications of the crane and simulation parame-
ters are summarized in Table 1. Here, the simulation
parameters may be different from the real operation
values in the industry.
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Fig. 2. A schematic diagram for the payload movement.

Table 1. Specifications of the crane and simulation

parameters.
Traveling Hoisting
Maximum ) S
acceleration 0.2 m/s 0.1 m/s
\ltde?gégl;m 1.0 m/s 0.5 m/s

< Simulation Parameters >

- The traveling distance from B to D: 30 m
- The rope length at B: 21 m

- The rope length at C: 15 m

2.4. Control performance specifications

In this paper, the control performance specifica-
tions are to maintain sway angle while traveling
within 0.0120 radian (about 0.7°) and to bring the
payload to a stop within +30 mm at terminal rope
length.

3. CONVENTIONAL COMMAND SHAPING
CONTROL

In the past, when a motion control engineer was
confronted with long settling times, the solutions
were relatively few. The most obvious comments are;
“make the system stiffer” or “make the load lighter.”
Both of these suggestions will help, but it is usually
difficult to substantially increase the stiffness or de-
crease the weight within the physical constraints of
the original design. The next round of suggestions in-
cludes, “lower the acceleration” or “use an S-curve.”
These suggestions can help reduce the vibration, but
in the final analysis, they only lower the system per-
formance. Lowering the acceleration proportionally
lowers the reaction forces. However, it takes a sig-
nificant reduction in acceleration to eliminate the vi-
brations. The result is a system that limps along to
avoid exciting vibrations. There must be a better solu-
tion that will allow us to maintain the original design
parameters without sacrificing performance or accu-
racy. The fundamental problem of vibratory systems
is that the motion transient excites the vibration.
Command shaping is based on the fact that the vibra-
tions exhibited by most systems can be characterized
by one or more frequencies that are excited by the
motion transient. Using this information, it is possible
to generate a modified command signal that will
move the system at the maximum rate possible, with-
out exciting vibrations. The command shaping
method was developed so that it can be easily imple-
mented in real time, without complex calculations.

3.1. Overview of command shaping control
Command shaping is a feedforward control tech-
nique for improving the settling time and the posi-
tioning accuracy, while minimizing residual vibra-
tions, of servo systems with a flexible mode. The
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method works by creating a command signal that
cancels its own vibration. That is, vibration caused by
the first part of the command signal is canceled by
vibration caused by the second part of the command.
Command shaping is a strategy for the generation
of time-optimal shaped commands using only a sim-
ple model, which consists of the estimates of natural
frequencies and damping ratios. Command shaping is
implemented by convolving a desired system com-
mand signal with a sequence of impulses, so-called
the input shaper, to produce a shaped input, as shown
in Fig. 3. The amplitudes and time locations of the
impulses are determined in the time domain by nu-
merically solving a set of constraint equations that are
set to the dynamic response of the system, or in some
cases, by using a closed-form solution. The shaped
command that results from the convolution is then
used to drive the system. If the impulses in the input
shaper are chosen correctly, then the system will re-
spond without vibration to any unshaped command.

3.2. Basic constraints for the input shaper

The angle constraint in Section 4, which is the
main part of this paper, is one additional constraint on
top of the basic constraints. Hence, to list all neces-
sary constraints and to help readers to understand, the
fundamental concept of the command shaping
method is briefly summarized from the work of
Singer and Seering [9] in this subsection. The con-
straints are based on the assumption that the system
can be treated as a superposition of linear time-
invariant (LTT) second-order systems.

The constraint on vibration amplitude can be ex-
pressed as the ratio of residual vibration amplitude
with shaping to the ratio of residual vibration ampli-
tude without shaping. This vibration percentage can
be determined by using the expression for residual
vibration of a second-order harmonic oscillator of fre-
quency « rad/sec and damping ratio ¢ [18]. The
vibration from a series of impulses is divided by that

from a single impulse to get the vibration percentage
as follows:

A command signal Impulses

L

e s - Component corresponding to A,

4 L
The shaped input (convolved signal)

Fig. 3. The command shaping process.

V@,0)=e 5™ J(c. O +S@O) . @)

where

N 2
C@,8)=Y Aie*™i cos(an1-¢21;)
i=1

N
S@,6)= Ae® sin(oy1-¢21,) .

i=l
N is the number of impulses in the input shaper, A;
and r; are the amplitudes and time locations of the
impulses, ¢y is the time of the last impulse, and @
and ¢ are the natural frequency and damping ratio

of the flexible mode of the system.

Additional constraints require that the impulses al-
ways sum to one and the shaper be as short as possi-
ble. These constraints ensure that the desired setpoint
will be achieved with a minimum time delay.

N
> A =1, )
i=1

min(ty ) . (6)

If the constraint equations require only zero resid-
ual vibration (V =0), then the resulting shaper is

called a zero vibration (ZV) shaper. The earliest ap-
pearance of ZV shaping was the technique of Posicast
control developed in the 1950’s [8]. However, the ZV
shaper will not work well on many systems because it
will be very sensitive to modeling uncertainties and
system nonlinearities.

For command shaping to work well on most real
systems, the constraint equations must ensure robust-
ness to modeling errors. The earliest form of robust
command shaping to errors in the system parameters
was achieved by setting the partial derivative with re-
spect to the frequency of the residual vibration equal
to zero, that is:

O:iV(a), ). @)
o

The resulting shaper is called a zero vibration and de-
rivative (ZVD) shaper. The ZVD shaper is much
more robust to modeling errors than the ZV shaper.
However, the ZVD shaper has a time duration equal
to one period of the vibration, as opposed to the one-
half period length of the ZV shaper. This means that a
ZVD shaped command will be one half period longer
than a ZV shaped command. This trade-off is typical
in the input shaper design process, that is, the addi-
tional insensitivity usually requires increasing the
length of the input shaper.

An alternate procedure for increasing insensitivity
uses extra-insensitivity (EI) constraints [10]. Instead
of restricting the residual vibration to zero in the
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modeling frequency, the residual vibration is limited
to a low level, a so-called tolerable vibration, V,,;.

The EI shaper achieves an increased robustness while
maintaining the same time duration as the ZVD
shaper (one cycle of vibration). The only cost is the
tolerance of some low-level residual vibration.

3.3, Sensitivity curves

The effect on sensitivity to modeling errors can be
displayed by the shaper’s sensitivity curve, a plot of
vibration versus frequency, i.e. (4) plotted as a func-
tion of @ [9]. The normalized frequency axis in Fig.
4is w,/w,, where @, is the actual frequency of

vibration and @,, is the modeling frequency, respec-

tively. The sensitivity curve presents how much re-
sidual vibration will exist when there is an error in the
estimation of the system frequency.

The vibration reduction characteristics of the input
shapers are compared using the sensitivity curves in
Fig. 4. As the ZV shaper is very sensitive to modeling
errors, a small error in the modeling frequency leads
to a significant residual vibration. On the other hand,
the ZVD shaper has considerably more insensitivity
to modeling errors, which is evident by noting that
the width of the ZVD curve is much larger than the
width of the ZV curve. The EI shaper has essentially
the same length as the ZVD shaper, but it is consid-
erably more insensitive.

To quantify the robustness of shapers, we define a
performance measure for a shaper’s sensitivity to
modeling errors. Insensitivity I is the width of the
sensitivity curve at a given level of vibration (toler-
able vibration, V,,,). Vibration levels of 3% and 5%

are commonly used to calculate insensitivity
(I3 and I5, respectively). Then, insensitivity I pre-
sents the effectiveness of the input shaper at a specific
level of vibration.

3.4. Assumptions for applying command shaping con-
trol to crane systems

It requires the following assumptions to apply the
command shaping control to crane systems.
(a) Initial conditions are all zeros.
(b) The motor driver outputs the desired trolley accel-
eration and an ideal velocity control of the trolley is
achieved.
(c) Only the sway dynamics are considered. The motor
dynamics are excluded in generating the control input.
(d) There are no external disturbances; Even if exter-
nal disturbances exist, those do not change the system
dynamic characteristics.
(e) No feedback loop is present to account for the
unmodeled dynamics; Only the feedforward control-
ler is applied to the crane system.
(f) The sway angle is small enough to lead to the lin-
ear approximation.
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Fig. 4. Sensitivity curves of ZV, ZVD, and EI (V,,; =
3%) shapers.

4. COMMAND SHAPING WITH ANGLE
CONSTRAINT

Solutions of (4)-(7) and v =0 will lead to com-
mands that reduce residual vibration and ensure ro-
bustness to modeling errors. However, the sway of
the payload suspended in the crane system during the
traveling has not been considered. If the sway is large,
the crane structure may be damaged, or an operator
can be in danger in case of emergency.

4.1. Expression of the sway angle

To limit the magnitude of sway angle during travel-
ing, an expression for the sway angle as a function of
the amplitudes and time locations of the input shaper
must be found. The desired function can be obtained
using the superposition property of the sway angle
responses from the individual step inputs.

An expression for the sway angle of the crane sys-
tem is derived using the Laplace transform. The
Laplace transform of the equation of motion for sys-
tem (3) is

(s2 +%j@(s) = %U(s), (8)

where U (s)=£ (assuming u(t) is a step input of
S
magnitude A ). Therefore, we have

2

A @
Os) = ———————,
Lw* s(s” +w7)

€)

where w=,/g/L is the natural frequency of system

oscillation.

Taking the inverse Laplace transform of equation
(9), assuming zero initial conditions, gives the sway
angle from a step input with magnitude A as a func-
tion of time as follows:

2
o(r) = A2 L_{ 20) 5 :}=A(1—cos(ot). (10)
Lo s(s”+w7) 8
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Multiple versions of (I10) can be used to obtain a
function that describes the transient sway angle
throughout traveling containing many step inputs. As-
suming that the shaped command profile consists of a
series of pulses obtained by the convolving reference
profile with input shaper, the sway angle throughout
traveling is given by

\

k
B(t) = 4oy (1) = Z?(l—cosa)(t—t})),

ty <t<tyyy, k=L...,.M (11)

where the prime symbol exhibits the amplitude and

time location of the shaped command profile, and

M is the number of total steps in the command pro-

file as shown in Fig. 5. Therefore, each segment is
described by

’ ’

0,5 () =ﬂ(l—cosa)(t—t]'))=——l(l—cosa)t)
8

0<t<t}, (12)

7

92~3(t)=—1(1—cosa)t) A—2(1 cosa(t—15)),
g

th <<y, (13)

Af A :
Ocm)~a+1) (1) = j(l_cosa)t)+?2(l—cos o)
A& ’
+o+ M (1—cosw(r—13,)),
8

ty <t. (14)

4.2. Limiting the transient sway angle

One method to limit the maximum transient sway
angle is to find all of the local extreme points of the
sway angle function and limit the angle amplitude
within a specified value at these instances. To obtain
the extreme points of the sway angle, (11) is differen-
tiated with respect to time and the result is set equal
to zero. The time values satisfying the resulting equa-
tion correspond to the extreme points.

Differentiating (12) for the sway angle between ¢

and té, &, - (t) and setting the results to zero, we

obtain
d91~2 _ Al'w

sinwt=0. 15
dt g

(15) is satisfied by t— (i=1,3,...) when the

magnitude of the sway angle is at a maximum. If we
require that (12) be less than the desired value at

t =—, then we have obtained a limited sway angle
1)

constraint equation that is a function of a specified
time.

’

e A 2A(
91~2 ) :—l(l—COS(ﬂ'))=—ls 6!()1 > (16)
w g 4
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Fig. 5. Generation of the sway angle function during
traveling.

where 6,,, is a tolerable sway angle. Also, the loca-
tion of the extreme point between ¢; and f;,, is

Ligmihsny =

1. AI(A;sina) L+Asin® 6+ -+ +Asinw t,fj
@ A+ Ajcosw £+ Acosw £,+A cosw 1] |

a7
The extreme points given by (17) are substituted back
into the appropriate segment of (11) and the resulting
equations are constrained to be below the tolerable
sway angle, 6,,;.

5. SHAPER DESIGN AND SIMULATIONS

In this section, various shapers together with a ref-
erence input, i.e. unshaped input, for the trolley to
reach the traveling distance are first designed and
then computer simulations are carried out with the
parameters introduced in Section 2.3. If the oscilla-
tion of the payload is ignored, then time-optimal
commands can be easily calculated using the maxi-
mum acceleration, a,, , and the maximum velocity,
Vinax » Of the system [5,6,16]. The maximum values of
the acceleration and the velocity are the same as in
Table 1. For the bang/bang profile, the command
switching time, 7, is

(o= |24 (18)
9max
where x; 1is the traveling distance. The acceleration
command is bang/off-bang when
2
Xd 2 Vmax /amax (19)

In this case, the pulse duration, t,, is

, = max (20)

P
amax

and the coast period, ¢, is
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X4 1%

fo=—d__ Tmax 1)

.
Vmax  %max

Now, if this unshaped time-optimal rigid-body input
is convolved with the proposed input shapers, then
the shaped input without exceeding the maximum ve-
locity, v, as well as the maximum acceleration,
(may » Of the system is generated as shown in Fig. 6.
One thing to note is that the profile of the shaped
command depends on the amplitudes and time loca-
tions of the shaper and the pulse duration, ¢ po of the

reference command signal. Suppose that the input
shaper consists of three impulses and the sequence of
pulse locations is # <, <t <r,, then the amplitude,

’

4, and time locations, ¢, of the modified input

shaper are

[A;J_{Al A4 A3 A Ay -4 }

1 Loty oty t, t,+l t,+i3

, i=1--,12 (22)
as shown in Fig. 6(a). However, if #; <ty <1, <t3
15 assumed, the shaped command becomes
ATl A A A A Ay —A3
Hlln 1, 1ottt 4

, i=1,0,12 (23)

as shown in Fig. 6(b).

5.1. Design of shapers

As described in Section 3, the solution of (4)-(6)
and V =0 will lead to a ZV input shaper that elimi-
nates only residual vibration when the model is exact
( L=15 m). The ZVD shaper, which has some level of
robustness to modeling errors, is determined by add-
ing one more constraint (7).
ZV shaper:

{A,]:[o.s 0.5 J o8
t; 0 3.8847

ZVD shaper:

Al [o2s 05 025
= : (25)
1 0 3.8847 7.7695

Modified input shapers are now obtained by solv-
ing (4)-(7) and an additional constraint limiting the
sway angle, for example, within 0.0120 radian (about
0.7°). The amplitudes and time locations of the input
shapers presented here are obtained by solving a set
of constraint equations, (4)-(7), (11), and (17), using
the General Algebraic Modeling System (GAMS),
which is a nonlinear optimization program [19].

“mux
‘ I A
! A
o % 4t}

A command signal

&

Impulses

Ih ta 31, IT

(a) The shaped command when 1, <1, <13 <1,

— ]

(b) The shaped command when 1, <t; <t, <i3.

Fig. 6. The command shaping process for the bang
/off-bang profile.

ZV_C shaper:

A;] [02542 04915 0.2542 26)
t: | | 0 42048 84097

13

ZVD_C shaper:
A;]_[0.1257 03743 03743 0.1257 o
| | 0 37755 75502 11.3258]

1

5.2. Single-pendulum system

A simple single-pendulum crane model with a sin-
gle linear flexible mode is investigated. Fig. 7 com-
pares simulation results for ZV, ZV with an angle
constraint, ZVD, and ZVD with an angle constraint
when hoisting of the payload occurs, respectively.
Also, the responses of the LTV model and the nonlin-
ear model are approximately the same because the
sway angle is small. Here, modified input shapers are
designed for limiting the transient sway angle within
0.0120 radian (about 0.7°).

The system responses to the shaped command sig-
nals are compared in Fig. 8. When the model is exact
as an LTI system, the shapers reduce the residual
sway distance of the payload to zero exactly at the
target point. However, as hoisting occurs, the shapers
yield small residual vibration. The modified input
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Fig. 7. Comparison of pendulum motions: ZV, ZV
with an angle constraint (0.012 rad), ZVD,
and ZVD with an angle constraint (0.012 rad).
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Fig. 8. Comparison of the time responses with shaped
inputs.

Table 2. Simulation results: simple single-pendulum
crane model. (LTI: L=15mand LTV: L=

21 m— 15 m).
Max. transient | Max. residual Traveling f sitivit
Shapers | Model sway angle swily distance Time nsen;l ity
(rad) {m) (sec) 3
LTI 0.0204 o
raY 38.885 0.0310
LTV 0.0260 0.0833
LTI 0.012 0
v_e 43410 0.2060
LTV 0.0137 0.01817
LTI 0.01464 0
ZVDh 42,770 0.1790
LTV 0.01505 0.0095
LTI 0.0120 0
ZVD_C 46.326 0.3420
LTV 0.0127 0.0041
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Fig. 9. Sensitivity curves: ZV, ZVD, ZV with an an-
gle constraint, and ZVD with an angle con-
straint (8,,; =0.012 rad).

shapers, which are in Table 2, are more effective than
other conventional shapers at limited transient sway
angles and the 3% insensitivity range as shown in Fig
8 and Fig. 9. The only penalty is that the traveling
times of the proposed input shapers increased to
11.6% and 8.3%, respectively.

5.3. Double-pendulum system

Crane dynamics can often be effectively modeled
as a single linear flexible mode. However, if the crane
is equipped with a heavy hook and the payload is suf-
ficiently light, then the crane dynamics can become
complicated by double-pendulum effects [20, 21]. Fig
10 shows a schematic diagram of a double-pendulum
crane model. Assuming that the cable and rigging
lengths, L, and L,, do not change during the mo-

tion, the linearized equations of motion for this dou-
ble-pendulum system are as follows:

0 1 0 0 0
—Li(1+R) 0 £R o |1
X = 1 1 L
X 0 0 0 1 X + 01 u(t),
8 g
—({+R) 0 —-=(0+R) O
LA+ L 0+B 0

(28)

where x is [0, 6,6, 60,1, R(=my/m) is the
payload-to-hook mass ratio, g is the acceleration of
gravity, and u(r) is the acceleration of the trolley.

Then, the two linearized frequencies of a double-
pendulum are derived as follows:
a,=

2 (29)
Jg\/(l+R)[l+iji\/(1+R)2[i+l] —4(”—RJ.
2 L L L L LL
Note that the frequencies depend on both the two ca-
ble lengths and the payload-to-hook mass ratio. Fig.

11 and Fig. 12 show how the frequency values change
as a function of the rope length when the payload-to-
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Fig. 10. Double-pendulum model of a crane system.
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Fig. 11. Frequencies as a function of the rope length,
Ll (R =0.2).
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Fig. 13. Comparison of the simulation results: two
mode shapers.

Table 3. Simulation results: double-pendulum crane
model (exact model: 100kg, mass change:
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Fig. 12. Frequencies as a function of the payload-to-
hook mass ratio, R (L;=15 m).

hook mass ratio is 0.2 and a function of the payload-
to-hook mass ratio when the rope length is constant at
5 m, respectively.

Designing two-mode input shapers can be accom-
plished in a variety of ways. The detail procedures of
design methods are known from the literature on
multi-mode shapers [22-24].

The system responses to the shaped command sig-
nals are compared in Fig. 13. As a result, the modified
input shapers, which are in Table 3, are more effective
than other conventional shapers in limited transient
sway and robustness.

100kg—200kg).
Max. transient | Max. residual Traveling
Shapers Model sway angle | sway distance Time
(rad) (m) (sec)
exact 0.0197 0.0
zvzy mass 40.88
change 0.0210 0.0339
exact 0.0114 0.0
NV s 45.40
change 0.0116 0.0124
exact 0.0132 0.0
ZVh-zv mass 44.78
change 0.0134 0.0058
exact 0.0120 0.0
ZVb.c-zv mass 48.30
change 0.0122 0.0067
6. CONCLUSIONS

In this paper, a modified command shaping control

design method to reduce residual vibration at the end-
point and to limit the sway angle of the payload dur-
ing traveling in crane systems was investigated. The
reduction of both residual vibration and transient
sway was demonstrated with computer simulations
using two types of crane model incorporating the
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change of rope length and the change of payload mass,
respectively. The only shortcoming of the modified
input shapers was that the traveling time of the crane
system was increased. However, considering the
safety in the presence of winds, the modified com-
mand shaping method was shown to be more effec-
tive than other conventional shapers in fulfilling three
objectives: limiting the transient sway angle within a
specified value, achieving the minimal residual sway
distance, and providing robustness in rope length
change.
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