• Title/Summary/Keyword: Container carrier

Search Result 121, Processing Time 0.021 seconds

On the Model Tests for POD Propulsion Ships

  • Go Seokcheon;Seo Heungwon;Chang Bong Jun
    • Journal of Ship and Ocean Technology
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • The procedures of model test and performance prediction for the CRP-POD propulsion ships, are studied. At the CRP-POD system, which are highly applicable to ultra large container carriers, RPM ratio of two propellers is not fixed, unlike conventional CRP system, and hence the power of each propeller must be predicted respectively. In this paper, a CRP-POD system is designed for 10,000 TEU class ultra large container carriers, and the characteristics of the CRP-POD system are experimentally studied. Finally, based on this study, the procedure of powering performance evaluation for CRP-POD propulsion ships is suggested. However, further studies on quantitative correction of the present procedure are required.

Model-Ship Correlation Study on the Powering Performance for a Large Container Carrier

  • Hwangbo, S.M.;Go, S.C.
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.4
    • /
    • pp.44-50
    • /
    • 2001
  • Large container carriers are suffering from lack of knowledge on reliable correlation allowances between model tests and full-scale trials, especially at fully loaded condition, Careful full-scale sea trial with a full loading of containers both in holds and on decks was carried out to clarify it. Model test results were analyzed by different methods but with the same measuring data to figure out appropriated correlations factors for each analysis methods, Even if it is no doubt that model test technique is one of the most reliable tool to predict full scale powering performance, its assumptions and simplifications which have been applied on the course of data manipulation and analysis need a feedback from sea trial data for a fine tuning, so called correlation factor. It can be stated that the best correlation allowances at fully loaded condition for both 2-dimensional and 3-dimensional analysis methods are fecund through the careful sea trial results and relevant study on the large size container carriers.

  • PDF

A Feasibility Study on the Application of Stern Tube Unit for the Twin Skeg LNG Carrier (쌍축 LNG 운반선에 대한 선미관 유닛 적용 가능성 연구)

  • Shin, Sang-Hoon;Sung, Young-Jae;Park, Jeong-Yong;Han, Bum-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.4
    • /
    • pp.282-289
    • /
    • 2016
  • Traditional construction method of the stern tube is difficult to control the process and needs excessive working hours. Recently in order to resolve these issues, stern tube unit has been installed for some commercial vessels. The stern tube unit is a monolithic structure of bush and related components. The purpose of this study is to carry out a feasibility study for application of the stern tube unit for a 174K twin skeg LNG carrier. In this study, a 19,000 TEU container carrier installing the stern tube unit has been selected to compare with the deformations of stern for a 174K twin skeg LNG carrier.

Carrier Tracking and Tracing System using Low Earth Orbit

  • Byeon Eui-Seok;Ahn Sung-Bum;Kang Sang-Hun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.704-707
    • /
    • 2003
  • The Purpose of carrier tracking and tracing is to achieve more information over shipments via carrying in mobile business .At multimodes, especially consignor wants to be aware of the exact situation and position of goods. As an innovate business model, we present CGPS(Carrier Global Positioning System) scheme usiug LEO(Low Earth Orbital) satellite. The LEO collects the data periodically and sends to the web server, and eventually customer's PC or PDA. This provides shipping company or freight forwarder with more robust information such as door status, container inside condition, etc.

  • PDF

Hull Form Development of 5,000TEU Class Container Carrier considering the Operation Profile (Operation Profile을 고려한 5,000TEU급 컨테이너선 선형개발)

  • Kim, Jin-Woo;Park, Sung-Woo;Lee, Pyung-Kuk;Lee, Wang-Soo;Sun, Jae-Ouk
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2017.10a
    • /
    • pp.59-62
    • /
    • 2017
  • Recently oil price has got lower, but energy efficiency has been considered as an important factor to minimize ship operational costs and reduce greenhouse gas emissions. For the reason, it is necessary that energy efficiency improvement for hull form design and operational performance reflect an understanding of the vessel's operational profile. Throughout the life of the vessel, this can lead to important economies of fuel, even if, in some cases, a small penalty can be taken for design condition. In the present paper, hull form was developed for 5,000TEU class container carrier at given operation profile. As a CFD result at several design point, optimized hull form has improved resistance performance in comparison with the basis hull form. To reducing the viscosity and the wave resistance at multi draft and multi speed, the hull form was investigated for Cp-curve, frame and local shape. Numerical study has been performed using WAVIS & Star-CCM+ and verified by model test in the towing tank.

  • PDF

An Experimental Study on the Effects of Afterbody Appendages and Hull Form on the Manoeuvrability of a Container Carrier (컨테이너 운반선의 조종성능에 미치는 선미 부가물과 선미형상의 효과에 관한 실험적 연구)

  • Ho-Young Lee;Deuk-Joon Yun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.3
    • /
    • pp.38-45
    • /
    • 1998
  • In this parer, the effects of a skeg, rudder and stern hull form on the manoeuvrability of a container carrier with small length to draft ratio have been investigated through a series of model test. Rudder open water tests and PMM tests were carried out with varying rudder area, afterbody appendages and stern hull form to investigate their effects on the manoeuvrability. The MMG model developed in Japan was used for the manoeuvring simulation with experimentally obtained hydrodynamic coefficients. The result showed that the effects by the variation of stern profile and the skeg below stern bulb are much larger than those by any other types of appendages in improving directional stability of the vessel.

  • PDF

Investigation of structural responses of breakwaters for green water based on fluid-structure interaction analysis

  • Lee, Chi-Seung;Heo, Haeng-Sung;Kim, Young-Nam;Kim, Myung-Hyun;Kim, Sang-Hyun;Lee, Jae-Myung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.2
    • /
    • pp.83-95
    • /
    • 2012
  • In the present study, the structural response of breakwaters installed on container carriers against green water impact loads was numerically investigated on the basis of the fluid-structure interaction analysis. A series of numerical studies is carried out to induce breakwater collapse under such conditions, whereby a widely accepted fluid-structure interaction analysis technique is adopted to realistically consider the phenomenon of green water impact loads. In addition, the structural behaviour of these breakwaters under green water impact loads is investigated simultaneously throughout the transient analysis. A verification study of the numerical results is performed using data from actual collapse incidents of breakwaters on container carriers. On the basis of the results of a series of numerical analyses, the pressure distribution of green water was accurately predicted with respect to wave mass and velocity. It is expected that the proposed analytical methodology and predicted pressure distribution could be used as a practical guideline for the design of breakwaters on container carriers.

Verification of Equipment Number Equation Considering New Types of Ships (선종 변화를 고려한 의장수 계산식의 적합성 검증)

  • Ku, Namkug;Ha, Sol;Lee, Kyu-Yeul;Yang, Jin-Hyeck;Bae, Jae-Ryu;Lee, Soo-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.2
    • /
    • pp.119-124
    • /
    • 2015
  • The purpose of this research is a verification of the current equation for calculating equipment number and a suggesting a method for development of a rational new equation. The equation for calculating equipment number consists of total surface area of a ship that fluid resistance act on. Equipment number determines the specification of anchoring and mooring equipment such as anchor weight, anchor chains length and diameter, the number, length and breaking load of tow lines and mooring lines. The equation for equipment number calculation is basically derived considering x, y components of a wind and current force acting on a ship. But this equation is only based on a tanker, which was main type of ships when the equation was derived. Therefore, verification of the equation is required for other types of ships, such as container carrier, LNG carrier, etc. Therefore, in this research, we find out the equation for equipment number calculation should be revised for other types of ships especially the container carrier, by comparing wind and current force acting on a ship to holding force of an anchor and anchor chains, which are selected based on the equipment number.

On the Unstable Behavior of Roll Moment due to the Manoeuvering of a Ship (조종운동이 유발하는 횡경사모우멘트의 불안정거동에 관한 연구)

  • 윤점동;손경호
    • Journal of the Korean Institute of Navigation
    • /
    • v.4 no.1
    • /
    • pp.51-61
    • /
    • 1980
  • In order to evaluate rolling characteristics of high speed container carrier the author developed yaw-sway-rudder coupled rool equation, which is likely to be 5th order differential equation. The free rolling time history with particular reference to automatic steering, was computed upon the base of the yaw-sway-rudder coupled roll equation. The computed result explained effects of $C_1$ and $C_2$ on rolling behaviors and furthermore the effect of $C_2$ proved to be very effective where $C_1$ and $C_2$ are yaw gin constant and yaw-rate gain constant of auto-pilot respectively. Computation was carried out using Matsumoto's data of hydrodynamic force derivatives of 5 meter long container model.

  • PDF

A Sensitivity Risk Analysis for Additional Truck Turnaround Time (ATTT) by Container Inspection Stations Derived from C-TPAT and CSI.

  • Yoon, Dae-Gwun
    • Journal of Navigation and Port Research
    • /
    • v.31 no.2
    • /
    • pp.151-157
    • /
    • 2007
  • After World Trade Center's Terror in 2001 and promulgating Maritime Transportation Security Act (MTSA, 2002) and Security and Accountability For Every Port Act (SAFE Port Act, 2006) in the United States, most of the attention on security of international transportation including marine carrier and facility has focused increasingly. Inspection stations in foreign seaport terminal including Busan, South Korea, have been installed by Container Security Initiative (CSI) and Customs Trade Partnership against Terrorism (C-TPAT). The inspection station, however, may directly and indirectly affect delay of truck turnaround time in the seaport, especially high and severe level of security. This paper was analysed a risk for the additional average delay of truck turnaround time incurring by the inspection station under the all level of security, C-TPAT and CSI. As a result of this risk analysis, the higher weighted inspection time based on raising security level, the less number of trucks to be inspected, which will derive high delay in the inspection station.