• 제목/요약/키워드: Contact manifolds

검색결과 78건 처리시간 0.019초

NEARLY KAEHLERIAN PRODUCT MANIFOLDS OF TWO ALMOST CONTACT METRIC MANIFOLDS

  • Ki, U-Hang;Kim, In-Bae;Lee, Eui-Won
    • 대한수학회보
    • /
    • 제21권2호
    • /
    • pp.61-66
    • /
    • 1984
  • It is well-known that the most interesting non-integrable almost Hermitian manifold are the nearly Kaehlerian manifolds ([2] and [3]), and that there exists a complex but not a Kaehlerian structure on Riemannian product manifolds of two normal contact manifolds [4]. The purpose of the present paper is to study nearly Kaehlerian product manifolds of two almost contact metric manifolds and investigate the geometrical structures of these manifolds. Unless otherwise stated, we shall always assume that manifolds and quantities are differentiable of class $C^{\infty}$. In Paragraph 1, we give brief discussions of almost contact metric manifolds and their Riemannian product manifolds. In paragraph 2, we investigate the perfect conditions for Riemannian product manifolds of two almost contact metric manifolds to be nearly Kaehlerian and the non-existence of a nearly Kaehlerian product manifold of contact metric manifolds. Paragraph 3 will be devoted to a proof of the following; A conformally flat compact nearly Kaehlerian product manifold of two almost contact metric manifolds is isomatric to a Riemannian product manifold of a complex projective space and a flat Kaehlerian manifold..

  • PDF

A NEW TYPE WARPED PRODUCT METRIC IN CONTACT GEOMETRY

  • Mollaogullari, Ahmet;Camci, Cetin
    • 호남수학학술지
    • /
    • 제44권1호
    • /
    • pp.62-77
    • /
    • 2022
  • This study presents an 𝛼-Sasakian structure on the product manifold M1 × 𝛽(I), where M1 is a Kähler manifold with an exact 1-form, and 𝛽(I) is an open curve. It then defines a new type warped product metric to study the warped product of almost Hermitian manifolds with almost contact metric manifolds, contact metric manifolds, and K-contact manifolds.

Generalized Quasi-Einstein Metrics and Contact Geometry

  • Biswas, Gour Gopal;De, Uday Chand;Yildiz, Ahmet
    • Kyungpook Mathematical Journal
    • /
    • 제62권3호
    • /
    • pp.485-495
    • /
    • 2022
  • The aim of this paper is to characterize K-contact and Sasakian manifolds whose metrics are generalized quasi-Einstein metric. It is proven that if the metric of a K-contact manifold is generalized quasi-Einstein metric, then the manifold is of constant scalar curvature and in the case of a Sasakian manifold the metric becomes Einstein under certain restriction on the potential function. Several corollaries have been provided. Finally, we consider Sasakian 3-manifold whose metric is generalized quasi-Einstein metric.

GRADIENT EINSTEIN-TYPE CONTACT METRIC MANIFOLDS

  • Kumara, Huchchappa Aruna;Venkatesha, Venkatesha
    • 대한수학회논문집
    • /
    • 제35권2호
    • /
    • pp.639-651
    • /
    • 2020
  • Consider a gradient Einstein-type metric in the setting of K-contact manifolds and (κ, µ)-contact manifolds. First, it is proved that, if a complete K-contact manifold admits a gradient Einstein-type metric, then M is compact, Einstein, Sasakian and isometric to the unit sphere 𝕊2n+1. Next, it is proved that, if a non-Sasakian (κ, µ)-contact manifolds admits a gradient Einstein-type metric, then it is flat in dimension 3, and for higher dimension, M is locally isometric to the product of a Euclidean space 𝔼n+1 and a sphere 𝕊n(4) of constant curvature +4.

GOLDEN PARA-CONTACT METRIC MANIFOLDS

  • Beldjilali, Gherici;Bouzir, Habib
    • 대한수학회논문집
    • /
    • 제37권4호
    • /
    • pp.1209-1219
    • /
    • 2022
  • The purpose of the present paper is to introduce a new class of almost para-contact metric manifolds namely, Golden para-contact metric manifolds. Then, we are particularly interested in a more special type called Golden para-Sasakian manifolds, where we will study their fundamental properties and we present many examples which justify their study.

Generalized Ricci Solitons on N(κ)-contact Metric Manifolds

  • Tarak Mandal;Urmila Biswas;Avijit Sarkar
    • Kyungpook Mathematical Journal
    • /
    • 제63권2호
    • /
    • pp.313-324
    • /
    • 2023
  • In the present paper, we study generalized Ricci solitons on N(κ)-contact metric manifolds, in particular, we consider when the potential vector field is the concircular vector field. We also consider generalized gradient Ricci solitons, and verify our results with an example.