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PSEUDO-SYMMETRIC CONTACT 3-MANIFOLDS
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Dedicated to Professor Masami Sekizawa on the occasion of his siztieth birthday

ABsTRACT. Contact Homogeneous 3-manifolds are pseudo-symmetric
spaces of constant type. All Sasakian 3-manifolds are pseudo-symmetric
spaces of constant type.

0. Introduction

A Riemannian manifold (M, g) is said to be semi-symmetricif R-R =
0, where R is the Riemannian curvature tensor and R- R is the derivative
of R by R (see section 1). Obviously, locally symmetric spaces are semi-
symmetric.

As a generalization of the semi-symmetry, R. Deszcz[13] introduced
the notion of pseudo-symmetry. A Riemannian manifold (M, g) is said to
be pseudo-symmetric if there exists a function L such that R(X,Y)-R =
L{{X NY) - R} for all vector fields X and Y on M. Here X AY is the
endomorphism field defined by

(X AY)Z =g(Y,2)X — g(Z,X)Y.

A pseudo-symmetric space (M, g) is said to be proper if M is not semi-
symmetric. In particular, a pseudo-symmetric space is called a pseudo-
symmetric space of constant type if L is a constant. Semi-symmetric
spaces are pseudo-symmetric spaces of constant type with L = 0. Three-
dimensional pseudo-symmetric spaces of constant type have been studied
extensively by O. Kowalski and M. Sekizawa[20]-[23]. N. Hashimoto and
M. Sekizawa, classified 3-dimensional conformally flat pseudo-symmetric
spaces of constant type [15].
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As is well-known, for a Riemannian 3-manifold, its Riemannian cur-
vature is determined by the Ricci curvature. In fact, the Riemannian
curvature tensor R is expressed as

R(X,Y)Z = S(Y,2)X — S(Z,X)Y
+9(Y, 2)QX ~ g(Z, X)QY — %(X AY)Z,

where S is the Ricci tensor, @ is the corresponding Ricci operator
and s is the scalar curvature. This fundamental fact implies that, in
3-dimensional Riemannian geometry, the constancy of the sectional cur-
vature is equivalent to the Einstein condition, i.e., p1 = p2 = p3 for the
eigenvalues {p;} of the Ricci tensor. Moreover, the pseudo-symmetry is
equivalent to the condition: the eigenvalues pj, p2, p3 of the Ricci tensor
satisfies p; = p2 (up to numeration) in 3-dimension. Thus the pseudo-
symmetry is a natural generalization of the constant curvature property
in 3-dimension.

It is well known that the maximum dimension of the isometry group
is 6 in 3-dimensional Riemannian geometry. The maximum dimension
is attained by spaces of constant curvature. There is no Riemannian 3-
manifold with 5-dimensional isometry group. Riemannian 3-manifolds
with 4-dimensional isometry group are homogeneous. Moreover, such
spaces are locally isometric to one of the following spaces; the special
unitary group SU(2), the Heisenberg group Hs, the special linear group
SL(2,R), product spaces S? x R or H? x R. These three Lie groups
appear in the several classification tables, eg., naturally reductive Rie-
mannian homogeneous 3-manifolds [33], 3-dimensional Sasakian space
forms [6], 3-dimensional D’Atri spaces [18], or the model geometries in
the sense of W. M. Thurston[32]. It is straightforward to check that
every Riemannian 3-manifold with 4-dimensional isometry group is a
pseudo-symmetric space of constant type. (See Appendix.)

In this article, we concentrate on the pseudo-symmetry of contact
Riemannian 3-manifolds. In section 2, we shall show that every Sasakian
3-manifold is pseudo-symmetric of constant type. Next, in section 3, we
shall investigate non-Sasakian contact homogeneous 3-manifolds. Our
main result is that all the contact homogeneous 3-manifolds are pseudo-
symmetric spaces of constant type. Furthermore, we exhibit explicit
examples of 3-dimensional proper pseudo-symmetric spaces of constant

type.
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1. Preliminaries

Let (M, g) be a Riemannian manifold with its Levi-Civita connection
V. Denote by R the Riemannian curvature tensor of M:

R(XaY) = [vXavY] _V[X,Y]a X’Y € x(M)

Here X(M) is the Lie algebra of all vector fields on M. A tensor field F’
of type (1, 3);

F:X(M)x X(M) x X(M) — X(M)

is said to be curvature-like provided that F' has the symmetric properties
of R. For example,

(1.1) (XAY)Z=g(Y,2)X —g(Z,X)Y, X,Y € X(M)

defines a curvature-like tensor field on M. Note that the curvature tensor
R of a Riemannian manifold (M, g) of constant curvature c satisfies the
formula R(X,Y) =c¢(X AY).

As is well known, a curvature-like tensor field F' acts on the algebra
T (M) of all tensor fields on M of type (1, s) as a derivation ([25], p.44):

(FP)(XD 7Xs;YaX)
k)
= F(X,Y{P(X1, -, X)} = > P(X1,--+ , F(X,Y) X5, Xo),
. Jj=1
where X1, -+, X, € X(M), P € T}(M). The derivative F - P of P by
F is a tensor field of type (1,s + 2).
For a tensor field P of type (1, s), we denote by Q(g, P) the derivative
of P with respect to the curvature-like tensor defined by (1.1);
Q(gap)(Xla' ot ’Xs;YvX) = (X/\Y)P(Xl"' ' 7XS)
=Y P(X1,-, (X AY)XG, -, Xo).
i=1

A Riemannian manifold (M, g) is said to be semi-symmetricif R-R = 0.
Obviously, locally symmetric spaces (VR = 0) are semi-symmetric.
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R. Deszcz[13] introduced the notion of a pseudo-symmetric space. A
Riemannian manifold (M, g) is said to be pseudo-symmetric if

R-R=1L Q(g,R)

for some function L. In particular, if L is constant, M is called a pseudo-
symmetric space of constant type [21]. A pseudo-symmetric space is said
to be proper if it is not semi-symmetric.

For Riemannian 3-manifolds, the following characterizations of the
pseudo-symmetry are known (cf. [12, 21, 22]).

PROPOSITION 1.1. A Riemannian 3-manifold (M, g) is pseudo-symme-
tric if and only if it is quasi-Einstein. Namely, there exists a one-form w
such that the Ricci tensor field S has the form:

S=ag+bwuw,

where a and b are functions.

ProprosITION 1.2. Let (M,g) be a Riemannian 3-manifold. Then
(M, g) is a pseudo-symmetric space of constant type if and only if there
exists a one-form w such that the Ricci tensor S is expressed as S =
a g+ bw @ w, where a is a function and b is a constant.

REMARK 1.3. The preceding proposition can be rephrased as follows
(see [21], Proposition 0.1):

A Riemannian 3-manifold is a pseudo-symmetric space of constant
type with R- R = L Q(g, R) if and only if the eigenvalues of the Ricci
tensor locally satisfy the following relations (up to numeration):

p1 = p2, p3 = 2L(constant).

2. Contact manifolds

Let M be a 3-dimensional manifold. A contact form is a one-form 7
such that n Adn # 0 on M. A 3-manifold M together with a contact
form 7 is called a contact 3-manifold. The Reeb vector field £ is the
unique vector field satisfying () =1, dn(¢,-) = 0.
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On a contact 3-manifold (M,n), there exists a (1,1)-tensor field ¢
and a Riemannian metric g such that

(2.1) @?=-T+n®¢ gpX,0Y)=g(X,Y)—n(X)n(),

(2.2) 9(X, oY) = dn(X,Y), X,Y e X(M).

The structure (p,&,7,9) is called the associated contact Riemann-
ian structure of (M,n). A contact 3-manifold together with its associ-
ated contact Riemannian structure is called a contact Riemannian 3-
manifold. A contact Riemannian 3-manifold M satisfies the following
formula [31]:

(2.3) (Vxp)Y =g(X +hX,Y)é —n(Y)(X +hX), X,Y € X(M).

Here h is an endomorphism field defined by h = 1/2L¢p. For later use,
we introduce the tensor field 7 of type (0,2) by 7 = L¢g.

The Webster scalar curvature W of a contact Riemannian 3-manifold

is defined by

W= %(s _5(,8) + 4).

The torsion invariant of M introduced by S. S. Chern and R. S. Hamil-
ton [9] is the square norm |7|? of 7. This invariant can be computed as:

IT* = ~25(¢,€) + 4.

A contact Riemannian 3-manifold is said to be an n-Finstein manifold
if the Ricci operator @ has the form:

(2.4) Q=al+P8®¢

for some functions « and .
By the definition, n-Einstein contact Riemannian 3-manifolds are
pseudo-symmetric.

DEFINITION 2.1. [3] A contact Riemannian manifold M is said to be
a contact (K, p)-space if there exist real constants « and p such that

R(X,Y)¢ = w{n(Y)X —n(X)Y}

(2.5) +p{n(Y)hX - n(X)hY}, X,Y € X(M).
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A contact 3-manifold (M, ¢, &, 7, g) is called a Sasakian manifold if it
satisfies

(2.6) (Vxp)Y = g(X,Y)§ —n(Y)X

for all X,Y € X(M).

The formulae (2.3) and (2.6) imply that a contact Riemannian 3-
manifold is Sasakian if and only if its Reeb vector field £ is a Killing
vector field (cf. [29]).

We easily check that Sasakian manifolds are contact (k,u)-spaces
with k =1 and h = 0.

Sasakian 3-manifolds have some remarkable properties. For instance,
the Ricci operator @ commutes with ¢, i.e., Q@ = Q. Moreover @ has
the form

(2.7) Q=0al +/nQ¢, a=%—1,ﬂ=3—%,

where s is the scalar curvature. Thus the principal Ricci curvatures are

S
P1=Pz=§_1, p3 =2.

Hence Sasakian 3-manifolds are pseudo-symmetric spaces of constant
type.

A plane section II,; at a point x of a contact Riemannian 3-manifold is
called a holomorphic plane if it is invariant under ¢,. The sectional cur-
vature function of holomorphic planes is called the holomorphic sectional
curvature.

A 3-dimensional contact Riemannian manifold with constant holo-
morphic sectional curvature is called a 3-dimensional contact Riemann-
ian space form [10]. In particular, Sasakian 3-manifolds of constant
holomorphic sectional curvature are called 3-dimensional Sasakian space
forms.

Three-dimensional contact Riemannian space forms are locally homo-
geneous. (See [10]).

The first named author obtained the following result.

PROPOSITION 2.2. [10] All 3-dimensional non-Sasakian contact (k,
)-spaces have constant holomorphic sectional curvature —(k + ).

The formula (2.7) implies the following
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PROPOSITION 2.3. A Sasakian 3-manifold is of constant holomorphic
sectional curvature if and only if it has constant scalar curvature. In
particular, a Sasakian 3-manifold which is a homogeneous Riemannian
3-manifold is of constant holomorphic sectional curvature.

Simply connected and complete 3-dimensional Sasakian space forms
are classified as follows:

PROPOSITION 2.4. [6] Simply connected and complete 3-dimensional
Sasakian space forms M3 (c) of constant holomorphic sectional curvature
¢ are isomorphic to one of the following unimodular Lie groups with
left invariant Sasakian structures: the special unitary group SU(2) for
¢ > =3, the Heisenberg group for ¢ = —3, or the universal covering
group SL(2,R) of the special linear group SL(2,R) for ¢ < —3. The
Sasakian space form M?3(1) is the unit 3-sphere S® with the canonical
Sasakian structure.

As a Riemannian 3-manifold, 3-dimensional Sasakian space form is a
naturally reductive homogeneous space. The naturally reductive homo-
geneous representations of the above model spaces {except S3) are given
by

SU(2) x U(1)/U(1), Hs x SO(2)/SO(2), SL(2,R) x SO(2)/SO(2).

Next, we recall the following results due to D. E. Blair, Th. Kouforgior-
gos, and R. Sharma:

PROPOSITION 2.5. [4] Let M be a contact Riemannian 3-manifold.
Then the following three conditions are mutually equivalent:
(i) M is n-Einstein;
(if) Qp = ¢Q;

(iii) M is a contact (x,0)-space with £ < 1.

PROPOSITION 2.6. [4] Let M be a contact Riemannian 3-manifold.
Then M satisfies Qp = ¢Q if and only if M is either (i) a Sasakian
3-manifold, (ii) a flat contact Riemannian 3-manifold, or (iii) a non-
Sasakian contact Riemannian space form of constant holomorphic sec-
tional curvature —k and constant £-sectional curvature k. In the third
case, k < 1.

These propositions imply the following result.
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COROLLARY 2.7. Contact Riemannian 3-manifolds such that Q¢ =
0@ are pseudo-symmetric. In particular, every Sasakian 3-manifold is a
pseudo-symmetric space of constant type.

For explicit Sasakian structure of SL(2,R), we refer to [17].

REMARK 2.8. A Sasakian manifold (of general dimension) is semi-
symmetric if and only if is of constant curvature 1 ([28]). Hence ev-
ery Sasakian 3-manifold, other than space of constant curvature 1, is
“proper” pseudo-symmetric space. S. Tanno[30] showed that conformally
flat Sasakian 3-manifolds are of constant curvature 1. Thus there are no
Sasakian examples in the classification table of conformally flat proper
pseudo-symmetric spaces of constant type due to N. Hashimoto and M.
Sekizawa/[15).

3. Non-Sasakian contact homogeneous 3-manifolds

In this section, we study the pseudo-symmetry of contact homoge-
neous Riemannian 3-manifolds. A contact Riemannian 3-manifold is
said to be homogeneous if there exists a connected Lie group G acting
transitively as a group of isometries on it which preserve the contact
form.

D. Perrone has proven that simply connected contact homogeneous
Riemannian 3-manifolds are Lie groups together with left invariant con-
tact Riemannian structures. Moreover such homogeneous spaces are
classified by the Webster scalar curvature W and the torsion invariant
|72 as follows:

PRrRoOPOSITION 3.1. [27] Let (M,n,g) be a simply connected contact
homogeneous Riemannian 3-manifold. Then M is a Lie group G together
with a left invariant contact Riemannian structure (7, g).

If G is unimodular, then G is one of the following:

(1) the Heisenberg group H3 if W = |7| = 0;
(2) SU(2) if 4v/2W > |7|;

(3) E(2) if 4/2W = || > 0;

(4) SL(2,R) if —|7| # 4V2W < |7;

(5) E(1,1) if 44/2W = —|7| < 0.

The Lie algebra g of G is generated by an orthonormal basis {e1, ez =
pe1, ez = £} with commutation relation:

(3.1) [e1,e2] = 2e3, [e2,e3] = cze1, [e3,e1] = czea.
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If G is non-unimodular, then the Lie algebra g of G satisfies the
commutation relations:

[61, 62] = Q€ + 263, [62, 63] = O, [63, 31] = ~ey,

where e3 = £, e1,e2 € Ker 1, e = ey, a # 0 and 4V2W < |7|. If
v = 0, then the structure is Sasakian (t =0) and W = —a?/4.

Now we investigate the pseudo-symmetry condition on a unimodu-
lar Lie group G with a left invariant non-Sasakian contact Riemannian
structure. Then, by Proposition 3.1, there exists an orthonormal basis
{e1,e2 = pe1,es = £} which satisfies the commutation relations (3.1).
By the assumption “non-Sasakian”, the case that co = c3 is excluded.

By using the well-known Koszul formula, the connection coefficients
{Ti;k} of (M, g) are computed explicitly as follows:

e

1

23 = 5(03 —c2+2),
1

213 = 5(63 —c2—2),

1
g1 = 5(63 +co—2),

{ all others are zero.

Here we used the convention: T'yjx := g(Ve,€j,ex). Then, using (3.2),
by straightforward computations we find

Rle1, e3)es = (1 (c3 — c2)? + (c3 + c2) — 3) e,

1
61,63 ( 3-—02 —5(032—022)4-1—-024-63) €1,
1
62,61 = (Z C3——02 —3+C3+02> €2,
(3.3) X
R(ez,e3)ez = (1(03 —I—Cz —c®+1+cy~ Cs) €2,
1 1, 5 9
R(es,e1)e 103—02 —5(03 — )+ 1—cy+c3)es,
1
R(es, ez)e; = (Z 03+C2 —c? 4+ 14¢ —03>
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By using (3.3) we get
(3.4) Qe1 = Fre1, Qe = Frez, Qes = Fies,

where we put

1
k= —§(c§ —c2) — 24 2cs,
1
(35) F2 = 5(6% — Cg) -2 =+ 262,
1

F3 = —5(63 - 62)2 + 2.
The Webster curvature and torsion invariant are given by

1
W = 1(02 + c3), |le = (c2 — 63)-2-

Let {w!,w? w®} be the dual orthonormal basis of {e1,ez,e3}. Now
we suppose that G is pseudo-symmetric, i.e., @ = al + bw ® ¢ for some
functions a and b. If b = 0, then G is of constant curvature 1 or 0 ([5]). In
the former case, G is (locally) isomorphic to S* with canonical Sasakian
structure, or equivalently, SU(2) with biinvariant Sasakian structure.

In the latter case, G is the locally isomorphic to the Fuclidean mo-
tion group E(2) with flat left invariant contact Riemannian structure.
The flat left invariant contact Riemannian structure on E(2) is given
explicitly in Example 3.9 below (see also [16], Section 6).

Hereafter, we restrict our attention to the case b # 0. Then we may
have the following three cases:

(1) @ =al + Q& (G is n-Einstein) and Fy = F; = a, F3 = a +b.
In this case, we have the commutation relations:

[61762] = 2esz, [62,63] = C2€1, [63,61] = (2 - 02)€2~

The Ricci operator is given by Q = {—2(1—c2)? +2}n®¢ with c2 # 0,2
(by our assumption b # 0). By the Milnor’s result ([24]) we see that G
is locally isometric to SU(2) (or SO(3)) or SL(2,R) (or O(1,2)). In this
case, W = 1/2 and |7|2 = 4(cp — 1)2.

(2) Q =al +bw? ®ey and Fy = F3 = a, F» = a +b. This case has
the following two possibilities:

(i): [e1,€2] = 2e3, [ea, €3] = caeq, [e3,e1] = (c2 + 2)ez,
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with Ricci operator Q = 4cow? ® ey with ¢ # 0 (by the assumption
b # 0).

(if): le1, e2] = 2e3, [e2,e3] = 2e1, [e3,e1] = csey,

with Ricci operator Q = (—3¢3 + 2c3)I + (¢} — 2c3)w? ® e2. Since we
assumed that b # 0, we have c3 # 0. Moreover c3 # 2, because we
assumed that G is non-Sasakian.

In the former subcase (i), the possible Lie algebras are su(2), s{(2,R),
or ¢(1,1). In the latter subcase (ii), g is isomorphic to su(2) or sl(2,R).
Hence G is locally isometric to SU(2) (or SO(3)), SL(2,R) (or O(1,2)),
or E(1,1).

(3) @ =al +bw' ®e; and Fy = F3 = a, F} = a + b; This case has
the following two subcases:
(iii): [e1, e2] = 2e3, [e2,e3] = cae1, [e3,€1] = (c2 — 2)ez,
with the Ricci operator @ = 4(cy — 2)w® ® €1 with co # 2, or
(iv): [e1, e2] = 2e3, [e2,e3] = caeq, [e3,e1] = 2e;

with Q = (=3¢ + 2co)I + (¢} — 2c2)w’ ® e;. Here cp # 0,2 from the
assumption, b # 0. Hence G is locally isometric to SU(2) (or SO(3)),
SL(2,R) (or O(1,2)) or E(1,1).

Finally, we consider the non-unimodular Lie group G with left invari-
ant (non-Sasakian) contact Riemannian structures. Then by Proposition
3.1, there exists an orthonormal basis {e;,es = we1,e3 = £} € g such
that

(3.6) le1,e2] = aep + 2e3, [e2,e3] =0, [e3,e1] = vea,

where a # 0. Moreover, G is Sasakian if and only if v = 0. From (3.6),
by using the Koszul formula we have

¢ +2
g3 = 1—2—*
212 = —«
-2
(3.7) § Tz = o=
-2
T312 = PYT
\ all others are zero.
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Then, by the definition of the curvature tensor, we have

244y -12
R(ey,ez)es = <:Y——~t—l———~— a2> e1,

-3 4 4
elaeS =< 7 + ’7+ )ela
2 14y —12
62,61 = (7 +2y a2) ez + aryes,
2
R(€2,63)63 = (7

R(es,e1)e1 = ayes + (

(y—2)?
4

~37y2 + 4y + 4)

- ] €3
4

R(e3,€2)62 = €3.

From these, we have the Ricci operator

(3.8) Qe1 = fiie1, Qex = faoea + fazes, Qes = fazez + fazes,

where we have put

2
(39) f11 = (—a2 -2+ 2")/ — %) ,
2
fo2 = <—a2—2+%>,

2
faz=faz=0vy, f3= (2— %—)

Then in a similar way as in the unimodular case, we have

Q = ful + (fz2 + fa3 — 2f11)V2(w? + %) ® %(ez + e3).

Hence, we have

THEOREM 3.2. Every 3-dimensional unimodular and non-unimodular
Lie group with special left-invariant contact Riemannian structure is a
pseudo-symmetric space of constant type.

Together with the classification(Proposition 3.1) of contact homoge-
neous 3-dimensional manifolds, we obtain
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PROPOSITION 3.3. Three-dimensional contact homogeneous Riemann-
ian manifolds with special left invariant contact Lie group structure are
pseudo-symmetric spaces of constant type.

Also, in view of the classification of contact (k, u)-space in [3], we get

COROLLARY 3.4. Three-dimensional non-Sasakian contact (k, p)-spaces
with special left invariant contact Lie group structure are pseudo-symmetric
spaces of constant type.

REMARK 3.5. The Ricci operator @ of a 3-dimensional non-Sasakian
contact (k, uu)-space is given by [3]:

Q=-I+ph+ 26+ pn®¢E.

EXAMPLE 3.6. (Minkowski motion group) Let G = E(1,1) be the
Minkowski motion group:

e 0 =z
E(1,1) = 0 e % y z,9Y,2z€R
0 0 1,

equipped with the following left invariant metric:
gy = e~ 2dx? + e¥dy? + N2d22,

where ) is a positive constant. Then (E(1,1), g») is a proper irreducible
Riemannian 4-symmetric space. Note that (E(1,1),g:1) is the model
space Sol of 3-dimensional solvegeometry [32].

The Ricci tensor of this homogeneous space is given by

pL=p2 =0, pg=—2/X%.

Hence (E(1,1), g)) is proper pseudo-symmetric space of constant type.
Under the homothetic change of the metric

1
g= Zt—(e_zzdx2 + e**dy® + \2d2?),

we obtain a contact homogeneous 3-manifold E(1,1) with left invariant
contact Riemannian structure determined by the metric g and the con-
tact form n = 1(e*dx + e *dy). This contact homogeneous 3-manifold
is a non-Sasakian contact space form. In particular, (E(1,1),g,7) is a
proper pseudo-symmetric space.
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REMARK 3.7. The Lie algebra ¢(1,1) of E(1,1) is given explicitly by

w 0 u
e(1,1) = 0 —w v u,v,w €R
O 0 1
Take a basis
0 0 1 0 0 0O 1 0 0
F={0 0 0),FR=(001),F=|0 -10
0 0O 0 0 0O 0 0 O

of ¢(1,1). Then the left translated vector fields of {F}, F, F3} are given
by
0 0 0
= ¥ — —e F— = —
fl—e ax7 f2 € ay, f3 az'
The dual coframe field is

wl = e %dz, w? = e*dy, w3 =dz.
Now we take the following left invariant vector fields u;, ug, us:

up = %(‘fl + fa2), ug = "\%(fl + f2), usz = fs.

This left invariant frame field satisfies the commutation relations:
[Ul,UQ] = 0) [U2,U3] =1uy, [u37u1] = —Uu.
We equip a left invariant Riemannian metric on E(1, 1) such that {e;, ez,

e3} := {u1/A1,u2/A2,u3/As} is orthonormal, where A1, A2, A3 are posi-
tive constants. The resulting Riemannian metric is

)\2 )\2
Gouars) = o (! + )+ 2!+ w2+ MW

Any left invariant metric on E(1,1) is isometric with one of the fol-
lowing metric:

A% 1 2\2 A% 1 2\2 1 3\2
Inradre) = 5 (—w + W) + (W + W)+ e (@)
1712
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with Ay > Ay > 0 (see [26], Proposition 2.3). Note that g(11,) = g1 =
4q. :
The commutation relations of {e1, ez, e3} are

[61,62] = C3€g, [62,63] = C1€1, [63,61] = C2€3
with ¢; = 1/(A2A3), c2 = —1/(A3A1), ¢z = 0. It follows also that

A1+ A _)\1+)\2 _)\1—)\2
S VO VS Ve W WS P A S VS W W

where we have put pu; = 1/2(c1 + ¢c2 + ¢3) —¢; for i = 1,2,3. Then we
have p1 = 2uaus, p2 = 2usp1, ps = 2pipe (cf. [24]). From these, we
see that py = po if and only if A\; = As. The other two cases p; = p3 or
p3 = p1 can not occur. Hence, we obtain the following result.

COROLLARY 3.8. Any pseudo-symmetric left invariant Riemannian
metrics on E(1,1) is homothetic to the 4-symmetric metric e~ 22dx? +
e??dy? + \2dz? for some A > 0.

EXAMPLE 3.9. (Euclidean motion group) The Euclidean motion group
G = E(2) is given explicitly by the following matrix group:

cosf —siné =z
E(2) = sinf cosf y z,y,0 € R
0 0 1

Let G the universal covering group of E(2). Then G is R3(z,y, 2)
with multiplication:

(z,y,2)-(z',y,?) = (x+coszx' —sinz ¢/, y+sinz z’ +cosz ¢, 2+ 2).

Take positive constants o, 3 and v and a left invariant frame:

e =0 —sinz~a—+coszg
T Ox oy /)’

€2 :’757

e3 =l co zaw sz@y =¢.
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Then this frame satisfies the following commutation relations:
le1,e2) = cres, ez, e3] = coer, es,en] =0

with ¢; = By/a, c2 = oy/B. The left invariant Riemannian metric
determined by the condition {ej, e2,e3} is orthonormal is given by (cf.
(26]):

Ja,By = (a—z cos®z + 7 %sin’ 7) da® + (@72 — B~%) sin(2z)dzdy
+ (0_2 sin? z 4+ 872 cos® z) dy? +y~2dz2.
This family essentially exhausts all left invariant metrics on G. See

[26], Proposition 2.4.
The principal Ricci curvatures are given by

1 1

p=—sata)a-eo) p=-sla-c) pm=late)a-c)

o

Hence G is pseudo-symmetric if and only if ¢; = ¢;. This condition is
equivalent to a = g, i.e., G is flat.

We may normalize {c, 3,7} so that ¢; = 2 (equivalently, a = 8v/2).
Under this normalization, ¢ := ¢y = 7?/2.

The associated contact Riemannian structure (7, £, ¢) is given by

n=aY(cosz dr +sinz dy), &=e,
pwer =0, ey =¢€3, ez = —ey

CoOROLLARY 3.10. Among all the left invariant Riemannian met-
rics on the universal covering E‘(2) of the Euclidean motion group, the
flat metrics are only left invariant metrics which are pseudo-symmetric.
Hence there are no proper pseudo-symmetric left invariant metric on
E(2).

There exist many homogeneous Riemannian 3-manifolds which are
pseudo-symmetric. For instance, in this paper, we exhibit examples of
contact homogeneous Riemannian 3-manifolds which are proper pseudo-
symmetric spaces (of constant type).

On the other hand, O. Kowalski[19] gave examples of non-homogeneous
pseudo-symmetric 3-spaces. Non-homogeneous Sasakian 3-manifolds pro-
vide examples of non-homogeneous pseudo-symmetric spaces.
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In view of the results of this paper, one may raise the following ques-
tion :

“ Are there examples of non-homogeneous, non-Sasakian, pseudo-sym-
metric contact manifolds 2”7

The classification due to O. Kowalski and M. Sekizawa[22, 23] mo-
tivates us to study the pseudo-symmetry of confoliated 3-manifolds (in
the sense of Y. Eliashberg and W. Thurston[14]).

4. Appendix. Riemannian 3-manifolds with 4-dimensional
isometry group

As we mentioned in Introduction, every Riemannian 3-manifold with
4-dimensional isometry group is a pseudo-symmetric space.

In this Appendix, we give a proof of this well known fundamental
result for reader’s convenience.

It is classically known that Riemannian 3-manifolds with 4-dimensional
isometry group are homogeneous (E. Cartan[8]).

L. Bianchi[1] and E. Cartan[8] obtained the following two parameter
family of homogeneous Riemannian metrics:

dz? + dy? A ydx — zdy )2

= +ldz+ - ————5 | -
Por T 4 ula? + )12 < 2 1+ p(z? +y?)
The metric g, is defined on the region:

D ={(z,y,2) € R*(z,y,2) | 1 +u(z2+4*) >0}

Note that D is the whole R3(z,y, 2) for u > 0.
The Riemannian 3-manifold (D, gy,,) is locally isometric to:
(1) A = pu = 0: Euclidean 3-space,
(2) A = 0: Riemannian products S? xR (g > 0), or H* xR (p < 0),
(3) XA # 0, pu=0: Heisenberg group Hi,
(4) A #0, p>0: SU(2),
(5) A#0, u<0: SL(2,R).
In particular, D is of constant positive curvature X*/4 if 4p = X and
A #0.
Moreover, every Riemannian 3-manifold with 4-dimensional isometry
group is locally isometric to D for some A, p.
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Take an orthonormal frame field

0 Ay o

_ 2 PAN AL A

61—{1+,U,(£L' +y)}8£€ 2 9z’

0 Ax 0

__ 2 PAN il i

2= {1+ u(e® +1))) 5 + 5 5
0
€3=-a—z.

Then the Ricci tensor of gy , is given by Ri1 = Rgp = 4pu — A%, Rsz =
/2.

PROPOSITION A.1. Every Riemannian 3-manifold with 4-dimension-
al isometry group is a pseudo-symmetric space of constant type.

Direct computation shows that R-R = 0 if and only if A2(4u—2?) = 0.
This relation implies that D is semi-symmetric if and only if D is locally
symmetric.

COROLLARY A.2. A Riemannian 3-manifold with 4-dimensional isom-
etry group is semi-symmetric if and only if it is locally symmetric and
hence locally isometric to S? x R or H? x R.

Comparing the metrics as above and the classification of 3-dimensional
D’Atri space due to O. Kowalski[18], we obtain

PROPOSITION A.3. Three-dimensional D’Atri spaces are pseudo-sym-
metric spaces of constant type.

REMARK A.4. The dual one-form w? of e3 is w3 = dz + (A\/2)(ydz —
xdy)/{1 + u(z? + y*)}. This one-form is contact if and only if A # 0.
Now we assume that A # 0. Take a contact form = Mw®/2. Then
the associated Riemannian metric is § = % gx,u- The resulting contact
Riemannian 3-manifold (D, 7, §) is a Sasakian space form of constant
holomorphic sectional curvature —3 + 16u/A2. (Compare with Proposi-
tion 3.2.)

Isometry groups of Riemannian 3-manifolds have dimension at most
6. A Riemannian 3-manifold has 6-dimensional isometry group if and
only if it is of constant curvature. Moreover, there is no Riemannain
3-manifold with 5-dimensional isometry group.

COROLLARY A.5. Riemannian 3-manifolds whose isometry groups
have dimension > 4 are pseudo-symmetric spaces of constant type.
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