• Title/Summary/Keyword: Contact angle method

Search Result 640, Processing Time 0.031 seconds

Feasibility Study of Laser Contact Angle Measurement for Nano-fiber Characterization (나노섬유의 특성분석을 위한 레이저 접촉각 측정기의 효율성 연구)

  • 신경인;안선훈;김성훈
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.27 no.5
    • /
    • pp.554-559
    • /
    • 2003
  • A newly developed contact angle measurement instrument by laser beam projection allows for rapid and direct determination of contact angles. The instrument may have a possibility to characterize newly developed nano-fibers. When the laser beam impinges on an edge of an interface of liquid and solid, projected beam were split across and made two straight lines on a tangent screen. From the result, it could measure the contact angle directly by reading the angle between two split beams. The purpose of this study was to prove reliability and reproducibility of the contact angle measurement instrument by laser beam projection compare to the conventional one by microscope through the comparative experiment and questionnaire. Test samples were selected by consideration of hydrophilic and hydrophobic, such as nylon 6 and polypropylene, respectively. The laser contact angle measurement has accurate, fast and convenient method to measure contact angle, and it can be a unique method to characterize nano-fibers.

Finite Element Analysis of Electrical Double Layers near Triple Contact Lines

  • Kang Kwan Hyoung;Kang In Seok;Lee Choung Mook
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.491-494
    • /
    • 2002
  • To assess the electrostatic interaction of surfaces at the triple contact line, the electrostatic field is analyzed by using the finite element method. The Helmholtz free energy is used as a functional which should be minimized under an equilibrium condition. The numerical results are compared with the nonlinear analytical solution for a two-dimensional charged interface and linear solution for a wedge shaped geometry, which shows fairly good agreement. The method is applied to the analysis of electrostatic influence on the contact angle on a charged substrate. The excess free energy found to increase drastically as the contact angle approaches to zero. This excess free energy Plays an opposite role to the Primary electrocapillary effect, as the contact angle gets smaller. This enables an alternative explanation for the contact-angle saturation phenomenon occurring in electrical control of surface tension and contact angle.

  • PDF

Development of a Contact Angle Measurement Method Based Upon Geometry (기하학적 원리에 의거한 접촉각의 측정)

  • 김동수;표나영;서승희;최우진;권영식
    • Resources Recycling
    • /
    • v.7 no.5
    • /
    • pp.41-45
    • /
    • 1998
  • A Hew way of contact angle measurement is derived based on simple geometrical calculation. Without using complicated contact angle measurement instrument. Just measuring the diameter and height of liquid lens made it possible to calculate the contact angle value with a reasonable reliability. To validate the contact angle value obtained by this method, contact angle of the same liquid lens is measured using conventional goniometer and it is verified that two values are nearly same within the limit of observational error.

  • PDF

NUMERICAL ANALYSIS OF DYNAMIC CONTACT ANGLE PROBLEMS IN ELECTROWETTING WITH LEVEL SET METHOD (레벨셋 기법을 이용한 전기습윤 현상의 동적 접촉각 문제에 대한 수치해석)

  • Park, J.K.;Kang, K.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.155-158
    • /
    • 2009
  • We developed a numerical method to analyze the contact-line problems, incorporating a dynamic contact angle model. We used level set method to capture free surface. The method is applied to the analysis of dynamic behavior of a droplet in DC electrowetting. The result is compared with an experimental data and result of perturbation method.

  • PDF

Two-dimensional Numerical Simulation of the Contact Angle and the Bubble Necking Using the Two Phase Lattice Boltzmann Method (2상 격자 볼츠만 방법을 이용한 접촉각과 Bubble Necking 2차원 수치 모사)

  • Ryu, Seung-Yeob;Kim, Jae-Yong;Ko, Sung-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.3
    • /
    • pp.10-17
    • /
    • 2011
  • Free energy based lattice Boltzmann method (LBM) has been used to simulate the contact angle and the bubble necking with large density ratio. LBM with the proper contact angle model is able to reduce the spurious currents and eliminate the singularity in the contact lines. The numerical results of the contact angles are satisfied with the Youngs law. For bubble necking flows, simulations are executed for various viscosities and contact angles. The phenomena of the bubble necking are simulated successfully and the subsequent results are presented. The present method is also applicable to the nucleate boiling flows.

ANALYSIS OF ELECTROWETTING DYNAMICS WITH CONSERVATIVE LEVEL SET METHOD (레벨셋 기법을 이용한 전기습윤 현상의 동적 거동에 대한 해석)

  • Park, J.K.;Hong, J.W.;Kang, K.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.84-87
    • /
    • 2009
  • Electrowetting is a versatile tool to handle tiny droplets and forms a backbone of digital microfluidics. Numerical analysis is necessary to fully understand the dynamics of electrowetting, especially in designing electrowetting-based devices, such as liquid lenses and reflective displays. We developed a numerical method to analyze the general contact-line problems, incorporating dynamic contact angle models. The method is based on the conservative level set method to capture the interface of two fluids without loss of mass. We applied the method to the analysis of spreading process of a sessile droplet for step input voltages and oscillation of the droplet for alternating input voltages in electrowetting. The result was compared with experimental data. It is shown that contact line friction significantly affects the contact line motion and the oscillation amplitude. The pinning process of contact line was well represented by including the hysteresis effect in the contact angle models.

  • PDF

Wetting properties between silver-copper-titanium braze alloy and hexagonal boron nitride

  • Sechi, Yoshihisa;Matsumoto, Taihei;Nakata, Kazuhiro
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.205-209
    • /
    • 2009
  • Wetting properties between silver-copper-titanium braze alloys with different titanium contents up to 2.8 mass% and hexagonal boron nitride ceramics were investigated using sessile drop method at 1123K in Argon. The final contact angle is less than $30^{\circ}$ when the Ti content was over 0.41 mass%. Meanwhile, the contact angle curves show different behavior. In case of using braze alloy containing 2.8 mass% of titanium, the initial contact angle is acute angle just after the melting of braze. In case of brazes containing titanium less than 2.26 mass%, the contact angle is larger than $90^{\circ}$ at the beginning and slowly decreases to acute angle. The reaction layer of titanium nitride is observed at the interface. In addition, the reaction of Ti in the braze and N in the bulk h-BN seemed to show diffusion limited spreading.

  • PDF

Precise Static Contact Angle Measurements Using Pythagolas Rule (피타고라스 원리를 이용한 정적 접촉각 정밀 각도 측정방법)

  • Choi, Jin-Yeong;Kwon, Dong-Jun;Wang, Zuo-Jia;Shin, Pyeong-Su;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.15 no.2
    • /
    • pp.57-62
    • /
    • 2014
  • Pythagolas rule was used for investigation of static contact angle in particular figures. Static contact angle measurement was important to evaluate the wettability between solid and liquid. Optimum measurement method and standardization of calculation for static contact angle were investigated for practical application. Optimum diameter of droplet for static contact angle measurement was confirmed as 1 mm. Contact angle measurement using Pythagolas rule was also used to calculate advancing, receding angle and wettability of different surface condition. At last, it was concluded that the Pythagolas rule method was more accurate than general lineation method for static contact angle measurement.

Characterization of Surfaces by Contact Angle Goniometry - I. Contact Angle Measurement by Laser Beam Projection- (접촉각측정에 의한 표면의 특성연구 - I. 레이저광선 투영에 의한 접촉각의 측정방법-)

  • Park Chung Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.15 no.1
    • /
    • pp.70-75
    • /
    • 1991
  • Contact angle measuring device was developed in this laboratory using laser beam projec-tion. The new method allows for rapid and direct determination of stationary, advancing, and receding contact angles on both planar and nonplanar solid surfaces, including fibers with very small diameters. A narrow laser beam impinges on an edge of an interface of liquid and solid. This makes two projected laser beam lines upon and radiating from the center of a protractor scale on a tangent screen. Contact angle is measured by determining the difference in angle on the protractor scale between the two projected laser beam lines. Contact angles measured on Perspex-CQ using this instrument were in agreement with the literature. it was shown that this instrument provides a novel method for the facile and accurate measurement of contact angles.

  • PDF

Wetting Properties of Biopolyester Films Prepared by Thermo-Compression Method

  • Rhim, Jong-Whan;Hong, Seok-In
    • Food Science and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.234-237
    • /
    • 2007
  • Water resistance of three biopolyester films, such as poly-L-lactate (PLA), poly-hydroxybutyrate-co-valerate (PHBV), and Ecoflex, and low density polyethylene (LDPE) film was investigated by measuring contact angle of various probe liquids on the films. The properties measured were initial contact angle of water, dynamic change of the water contact angle with time, and the critical surface energy of the films. Water contact angle of the biopolyester films ($57.62-68.76^{\circ}$) was lower than that of LDPE film ($85.19^{\circ}$) indicating biopolyester films are less hydrophobic. The result of dynamic change of water contact angle also showed that the biopolyester films are less water resistant than LDPE film, but much more water resistant than cellulose-based packaging materials. Apparent critical surface energy for the biopolyester films (35.15-38.55 mN/m) was higher than that of LDPE film (28.59 mN/m) indicating LDPE film is more hydrophobic.