• 제목/요약/키워드: Contact Zone

검색결과 320건 처리시간 0.029초

Analysis of quasi-brittle materials at mesoscopic level using homogenization model

  • Borges, Dannilo C;Pituba, Jose J C
    • Advances in concrete construction
    • /
    • 제5권3호
    • /
    • pp.221-240
    • /
    • 2017
  • The modeling of the mechanical behavior of quasi-brittle materials is still a challenge task, mainly in failure processes when fracture and plasticity phenomena become important actors in dissipative processes which occur in materials like concrete, as instance. Many homogenization-based approaches have been proposed to deal with heterogeneous materials in the last years. In this context, a computational homogenization modeling for concrete is presented in this work using the concept of Representative Volume Element (RVE). The material is considered as a three-phase material consisting of interface zone (ITZ), matrix and inclusions-each constituent modeled by an independent constitutive model. The Representative Volume Element (RVE) consists of inclusions idealized as circular shapes symmetrically and nonsymmetrically placed into the specimen. The interface zone is modeled by means of cohesive contact finite elements. The inclusion is modeled as linear elastic and matrix region is considered as elastoplastic material. A set of examples is presented in order to show the potentialities and limitations of the proposed modeling. The consideration of the fracture processes in the ITZ is fundamental to capture complex macroscopic characteristics of the material using simple constitutive models at mesoscopic level.

옥동단층(玉洞斷層) (The Okdong Fault)

  • 김정환;고희재;기원서
    • 자원환경지질
    • /
    • 제22권3호
    • /
    • pp.285-291
    • /
    • 1989
  • The Okdong Fault is situated in Okdong-Hamchang area, the central part of Korea. The area consists of Precambrian gneisses and granitoids, Paleozoic clastic and carbonate rocks, and Mesozoic clastic rocks and igneous intrusives. The Okdong Fault is situated along contact boundary between the lowermost Cambrian Basal Quartzite and Precambrian basements. Mylonites occur as narrow zone which is extended over 100km and is restricted to within 10m-30m along the Okdong Fault. The main features of mylonites are quartz mylonite derived from Cambrian Basal Quartzite and mylonitic granitoids from Precambrian granitoids. Movement sense is deduced as a sinistral strike-slip movement with evidence of rotation of sheared porphyroclasts, rotation of fragments and S/C-bands. The mylonite zone has been reactivated as fault which reveals oblique-slip movement. The fault resurges as faults which reveals normal(to the NW) and reverse(to the SE) dip-slip movement. Normal faults are dominant in the northern and southern part and reverse or thrust faults are dominant in the central part of the Okdong Fault. The thrust movement can be correlated with the Daebo Orogeny of Jurassic Period. Granites and dyke rocks intruded into Paleozoic and Precambrian rocks during Cretaceous Period.

  • PDF

원자로 노심용융물의 성분비 변화가 증기폭발에 미치는 영향 (An Influence of Corium Composition Variations on a Spontaneous Steam Explosion in Severe Accidents in a Nuclear Reactor)

  • 김종환;박익규;홍성완;민병태;송진호;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.2041-2046
    • /
    • 2004
  • Recently series of steam explosion experiments have been performed in the TROI facility to identify the influence of corium compositions on the occurrence of a spontaneous steam explosion varying corium melt composition. The compositions of the corium were 0 : 100, 50 : 50, 70 : 30, 80 : 20 and 87 : 13 at weight percent of $UO_2$ to $ZrO_2$, and the mass of the corium was about 10kg. Corium melt at 0 : 100 weight percent (pure zirconia) caused a strong spontaneous steam explosion, and melt at 70 : 30 weight percent(eutectic corium) led to a weak steam spike, while melts at other compositions did not result in spontaneous steam explosions, when they came into contact with 67cm deep water pool at room temperature. It seems that the explosivity of pure zirconia is stronger than that of corium at other compositions and a steam explosion is not likely to occur with corium melts at non-eutectic compositions which are included in mushy zone region.

  • PDF

광섬유 센서를 이용한 50,000원 지폐 위조 판별에 관한 연구 (A Study about the Discrimination of Counterfeit \50,000 won bills Using Optical Fiber Sensor)

  • 강대화;홍준희
    • 한국생산제조학회지
    • /
    • 제21권1호
    • /
    • pp.15-20
    • /
    • 2012
  • The authenticity of bank note is threatened by increasing a counterfeit note with development of the information industry, recently. The importance of counterfeit discrimination is stressed, but there is a limits to popularization. Because usually, the existing counterfeit discriminator uses invisible ray zone like UV, IR, etc. The purpose of this paper is the construction of counterfeit discrimination system for \50,000 won bills. This system is used optical fiber sensor with excellent confidence as well as easy way of using in wave length of a visible ray zone. The light was altered by lightening optical fiber sensor to particular part of bank notes in order displacing response of optical fiber sensor. The experiment was processed with data of 100 bank notes on manufacture optical fiber, probe, jig. As a result, the discrimination conuterfeit was verified when the experiment was processing with hologram or CSI on the bank notes with three kinds of color printer.

원형기초의 설계하중 예측을 위한 유안요소해석 (Finite Element Analysis to Predict Design Loads of Circular Foundation)

  • 김성득;김미룡
    • 한국지반공학회지:지반
    • /
    • 제5권1호
    • /
    • pp.19-26
    • /
    • 1989
  • 탄소성체지반위에 놓인 원형기초가 축대칭하중을 받았을 경우에 유한요소법에 의한 비선형해석을 수행한 결과로부터, 지반의 소성영역이 원판의 모서리부근에서 일어나기 시작하여 중심축 둘레로 연결되었을 때 접지압이 급격히 변하며 전단파괴가 시작된다고 판단되고 이 때의 외부작용하중을 설계하중으로 정 의하였다. 지반의 항복조건으로 Mohr-Coulomb의 파괴이론을 적용한 수치해석의 결과와 적절한 안전율에 근거한 실험결과가 근사함을 확인하였으나 Terzaghi공식에 의한 값보다는 작았다.

  • PDF

직접전단시험모델에 의한 뿌리말뚝의 탄소성조인트 유한요소해석 (Elasto-plastic Joint Finite Element Analysis of Root-pile Using the Direct Shear Test Model)

  • 한중근
    • 한국환경복원기술학회지
    • /
    • 제5권4호
    • /
    • pp.19-30
    • /
    • 2002
  • The stability of slope using root-pile like to the reinforcements is affected by the interaction behavior mechanism of soil-reinforcements. Through the studying on the interaction in joint of its, therefore, the control roles can be find out in installed slope. In study, the stress level ratio based on the insert angle of installed reinforcements in soil used to numerical analysis, which was results from the duty direct shear test in Lab. The maximum shear strain variation on the reinforcements was observed at insert angle, which was approximately similar to the calculated angle based on the equation proposed by the Jewell. The elasto-plastic joint model on the contact area of soil-reinforcements was presumed, the reinforced soil assumed non-linear elastic model and the reinforcements supposed elastic model, respectively. The finite element analysis of assumed models was performed. The shear strain variation of non-reinforced state obtained by the FEM analysis including elasto-plastic joint elements were shown the rationality of general limit equilibrium analysis for the slope failure mode on driving zone and resistance zone, which based on the stress level step according to failure ratio. Through the variation of shear strain for the variation of inserting angle of reinforcements, the different mechanism on the bending and the shear resistance of reinforcements was shown fair possibility.

Numerical investigation of continuous composite girders strengthened with CFRP

  • Samaaneh, Mohammad A.;Sharif, Alfarabi M.;Baluch, Mohammed H.;Azad, Abul K.
    • Steel and Composite Structures
    • /
    • 제21권6호
    • /
    • pp.1307-1325
    • /
    • 2016
  • Nonlinear behavior of two-span, continuous composite steel-concrete girders strengthened with Carbon Fiber Reinforced Polymers (CFRP) bonded to the top of concrete slab over the negative moment region was evaluated using a non-linear Finite Element (FE) model in this paper. A three-dimensional FE model of continuous composite girder using commercial software ABAQUS simulated and validated with experimental results. The interfacial regions of the composite girder components were modeled using suitable interface elements. Validation of the proposed numerical model with experimental data confirmed the applicability of this model to predict the loading history, strain level for the different components and concrete-steel relative slip. The FE model captured the different modes of failure for the continuous composite girder either in the concrete slab or at the interfacial region between CFRP sheet and concrete slab. Through a parametric study, the thickness of CFRP sheet and shear connection required to develop full capacity of the continuous composite girder at negative moment zone have been investigated. The FE results showed that the proper thickness of CFRP sheet at negative moment region is a function of the adhesive strength and the positive moment capacity of the composite section. The shear connection required at the negative moment zone depends on CFRP sheet's tensile stress level at ultimate load.

New insights about ice friction obtained from crushing-friction tests on smooth and high-roughness surfaces

  • Gagnon, Robert E.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권3호
    • /
    • pp.361-366
    • /
    • 2018
  • Ice crushing occurs in many situations that involve a sliding frictional component such as sports involving ice-contact, ice interaction with ship hulls, and ice-on-ice sliding/crushing within glaciers and between interacting sea ice floes. Ice crushing-friction tests were conducted in the lab at $-10^{\circ}C$ using a set of acrylic ice-crushing platens that included a flat smooth surface and a variety of high-roughness surfaces with regular arrays of small prominences. The experiments were part of Phase II tests of the Blade Runners technology for reducing ice-induced vibration. Ice was crushed against the platens where the ice movement had both a vertical and a horizontal component. High-speed imaging through the platens was used to observe the ice contact zone as it evolved during the tests. Vertical crushing rates were in the range 10-30 mm/s and the horizontal sliding rates were in the range 4.14-30 mm/s. Three types of freshwater ice were used. Friction coefficients were extraordinarily low and were proportional to the ratio of the tangential sliding rate and the normal crushing rate. For the rough surfaces all of the friction coefficient variation was determined by the fluid dynamics of a slurry that flowed through channels that developed between leeward-facing facets of the prominences and the moving ice. The slurry originated from a highly-lubricating self-generating squeeze film of ice particles and melt located between the encroaching intact ice and the surfaces.

Location determining method of critical sliding surface of fillings in a karst cave of tunnel

  • Lin, P.;Li, S.C.;Xu, Z.H.;Huang, X.;Pang, D.D.;Wang, X.T.;Wang, J.
    • Geomechanics and Engineering
    • /
    • 제16권4호
    • /
    • pp.415-421
    • /
    • 2018
  • A location determining method is proposed for critical sliding surface in the stability analysis of the filling materials in karst caves. First, a preliminary location of the sliding surface is determined based on simulation results which includes displacement contour and plastic zone. The sliding surface will locate on the bottom contact interface when the friction angle is relative small. However, a weakened contact interface always becomes the critical sliding surface no matter what the friction angle is. Then when the friction angle becomes larger, the critical sliding surface inside fillings can be determined by a parabola, the coefficient of which increases linearly with the friction angle under the same cohesion. Finally, the critical sliding surface approximately remains unchanged with friction angle. The influence of cohesion is similar to that of friction angle. Although affected by shape, size or position of the karst cave, the critical sliding surface mainly depends on both friction angle and cohesion. Thus, this method is always useful in determining the critical sliding surface.

X선 회절과 유한요소법을 이용한 터빈 블레이드의 파괴기구에 관한 연구 (A Study on the Failure Mechanism of Turbine Blade using X-Ray Diffraction and FEM)

  • 김성웅;홍순혁;전형용;조석수;주원식
    • 대한기계학회논문집A
    • /
    • 제26권8호
    • /
    • pp.1645-1652
    • /
    • 2002
  • The failure analysis on fractured parts is divided into the qualitative method by naked eyes and metallurgical microscope etc. and the quantitative method by SEM and X-ray diffraction etc. X-ray fractography can be applied to contaminated surface as well as clean surface and gain the plastic deformation and the residual stress near the fractured surface. Turbine blade is subject to cyclic bending force by steam pressure and suffers fatigue damage according to the increasing operating time. Therefore, to clean up the fracture mechanism of torsion-mounted blade in nuclear plant, the fatigue and the X-ray diffraction test was performed on the 12%Cr steel fur turbine blade and the fractured parts. The correlation of X-ray parameter and fracture mechanics parameter was determined, and then the load applied to actual broken turbine blade was predicted. Failure analysis was performed by contact stress analysis and Goodman diagram of torsion-mounted blade.