• Title/Summary/Keyword: Contact Wheel

Search Result 432, Processing Time 0.038 seconds

A Study on the Shape Design of Wheel-Rail for Rolling Stock (철도차량용 휠과 레일의 형상설계에 관한 연구)

  • Seong, Gi-Deuk;Yang, Won-Ho;Jo, Myeong-Rae;Heo, Seong-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.2033-2039
    • /
    • 1999
  • One of the main causes of severe wear or crack initiation in wheel and rail is the contact stress due to wheel-rail contact. In this paper, the shape design based on more reasonable contact stress analysis rather than a general Hertzian contact theory is investigated in order to reduce the contact stress. The optimal design is performed using the simple 2-D finite element model and its results are verified by 3-D finite element analysis.

Prediction of Rolling Noise of a Korean High-Speed Train Using FEM and BEM (유한요소법과 경계요소법을 이용한 한국형 고속전철의 전동소음 예측)

  • 양윤석;김관주
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.444-450
    • /
    • 2000
  • Wheel-rail noise is normally classified into three catagories : rolling impact and squeal noise. In this paper rolling noise caused by the irregularity between a wheel and a rail is analysed as follows: The irregularity between the wheel and the rail is assumed as linear superposition of sinusoidal profiles. Wheel-rail contact stiffness is linearized by using Hertzian contact theory and then contact force between the wheel and the rail is calculated. vibration of the rail and the wheel is calculated theoretically by receptance method or FEM depending on the geometry of the wheel or the rail for the frequency range of 100-500 Hz important for noise generation. The radiation noise caused by those vibration response is computed by BEM To verify this analysis tools rolling noise is calculated by proposed analysis steps using typical roughness data and these results are compared with experimental rolling noise data. This analysis tools show reasonable results and finally used for the prediction of the Korean high speed train rolling noise.

  • PDF

Evaluation of Boundary Conditions for Structural Analysis of Wheel Bearing Units (Wheel Bearing Unit의 구조해석을 위한 경계조건 설정에 관한 연구)

  • 김기훈;유영면;임종순;현준수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.230-237
    • /
    • 2000
  • The wheel bearing in vehicles has been improved to unit module by joining a bearing to a hub in order to achieve weight reduction and easy assembly. Currently, the contact force between a raceway and balls of a bearing is applied as the external force in order to analyse the structure of the unit type bearings. In this paper, simplified boundary conditions are discussed for structure analysis of wheel bearing unit. From the procedure, the contact conditions of balls and race in wheel bearing unit are considered as equivalent non-linear spring elements. The end node of a spring element is constrained in displacement. And the external force of boundary conditions is applied at the contact point between tire and road. For the evaluation of this analysis, its results for the force of spring elements are compared with contact forces of calculated results. and also maximum equivalent stresses of analysis are compared with results of test at the flange of inner ring. The analysis results with proposed boundary conditions are more accurate than results from analysis which is generally used.

  • PDF

A Study for Improvement of Cornering Fatigue Test by Eliminating a Fretting Effect on Steel Wheel to enhance Durability and Reliability (스틸 휠 굽힘 모멘트 내구시험의 내구신뢰성 개선에 대한 연구 - 스틸 휠 접촉면의 프랫팅 제거 -)

  • Chung, Soo-Sik;Jung, Won-Wook;Yoo, Yeon-Sang;Kang, Woo-Jong;Kim, Dae-Sung;Kwon, Il-Ki
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1326-1330
    • /
    • 2008
  • The failure mode of steel road wheels in a vehicle is cracks from ventilation hole through to contact plane on steel wheel's disc plate. But a number of cracks of Cornering Fatigue Limit Test is on contact plane near to wheel nut mounting area, even though it's satisfied with specified cycles. So this paper searches out causes to improve durability and reliability of C.F.T by uni-axial bending moment test. The verified cause is a "fretting" on contact area of steel wheel. In result, this paper suggests a solution to prevent a fretting by inserting a damping shim, 0.7mm between steel wheel contact areas. Therefore this paper makes it possible to move crack position of C.F.T in steel wheel from contact plane to vehicle's failure mode.

  • PDF

Research for a factor affecting creep force at Wheel/Rail contact surface of Roller Rig (모의주행성능시험기의 차륜/레일 접촉부 CREEP FORCE에 미치는 영향 인자에 대한 연구)

  • Jeon, Seung-Woo;Koo, Dong-Hoe;Kim, Jae-Chul;Hwang, Seok-Youl
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.606-612
    • /
    • 2008
  • Creep force is one of the only appeared at conventional train which used to be driven by metallic wheel and rail contact. Due to the elastic deformation of wheel/rail contact patch by the weights of wheel and all the components related to it, creep force generates and becomes to the decision factor of critical speed of bogie(or railway vehicle) which is the criteria of avoiding vehicle to be unstable. There are many kind of factors which affect generation of creep force at a wheel/rail contact surface such as viscosity of contact patch, velocity, wheel and rail geometric profile, mechanical properties of wheel and rail. This paper concentrates on a wheelset simple 2 DOF Equation of Motion being exerted. From the simple numerical analysis using linear solution about getting creep force some factors could find roughly. Among the factors geometric parameter could be the one of most important for this study. In the future we'll prolong the range of study to find out method of measuring creep force easily.

  • PDF

ROLL CENTER ANALYSIS OF A HALF-CAR MODEL USING POLE FOR SMALL DISPLACEMENT

  • Lee, J.K.;Shim, J.K.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.833-839
    • /
    • 2006
  • In this paper, roll behavior of three planar half car models are compared. The first model is a simple model whose contact point between a wheel and the ground is assumed to be fixed with a revolute joint. The second model is a modified model of the fIrst model, whose wheel tread width can vary. In this model, the instant center of a wheel with respect to the ground, which is crucial to find the roll center, is assumed to be at the contact point of a wheel and the ground. The last model uses the pole of a wheel with respect to the ground for small displacement as the instant center of a wheel with respect to the ground. Loci of the center of gravity point, the fixed and the moving centrodes which are traces of roll center position in the ground and the body frame respectively, wheel contact points, and instant centers of a wheel with respect to the ground are calculated.

AAR's R&D Status on An Automated Measurement System for Wheel/Rail Contact Condition Inspection (미국철도협회의 차륜/레일 접촉상태 차상 자동검측 기술 개발 현황)

  • Chung, Heung-Chai
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.115-118
    • /
    • 2007
  • The geometry of wheel and rail profiles is the primary contributor to wheel and rail interaction. These profiles interact to influence truck steering, vehicle lateral stability, wheel/rail wear and surface damage. Maintaining good control of the profiles is one of the keys to ensuring preferred wheel and rail interaction. Transportation Technology Center, Inc., Pueblo, Colorado, is developing an automated measurement system for wheel/rail contact condition inspections supported by AAR(Association of American Railroads). The system uses a modified version of $WRTOL^{TM}$ (Wheel/Rail Tolerances)--software that performs extensive analysis of wheel and rail contact conditions

  • PDF

Evaluation of Residual Stress of railway wheel (차륜/래일 접촉에 의한 차륜의 잔류응력 평가)

  • Seo Jung-Won;Goo Byeung-Choon;Chung Heung-Chai
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.668-673
    • /
    • 2003
  • A wheel and axle failure can cause a derailment with its attendant loss of life and property. The service conditions of railway vehicles have become severe in recent years due to a general increase in operating speeds. Damages of railway wheel are a spalling by wheel/rail contact and thermal crack by braking heat etc. One of the main source of damage is a residual stress. therefore it is important to evaluate exactly. A Residual stress of wheel is formed at the process of heat treatment when manufacturing. it is changed by contact stress developed by wheel/rail contact. Distributions of residual stress vary according to a magnitude of wheel load, a magnitude of friction when acceleration and deceleration. The objective of this paper is to estimate the influence of wheel motion on the residual stress distribution in the vicinity of the running surface.

  • PDF

Evaluation of Residual Stress of railway wheel (철도차량 차륜의 잔류응력 평가)

  • 서정원;구병춘;이동형;정흥채
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.208-213
    • /
    • 2002
  • Railway wheel and axle are the most critical components in railway system. A wheel and axle failure can cause a derailment with its attendant loss of life and property. The service conditions of railway vehicles have become severe in recent years due to a general increase in operating speeds. Therefore, more precise evaluation of wheelset strength and safety has been desired. Damages of railway wheel are a spatting by wheel/rail contact and thermal crack by braking heat etc. One of the main source of damage is a residual stress. therefore it is important to evaluate exactly. A Residual stress of wheel is formed at the process of heat treatment when manufacturing. it is changed by contact stress developed by wheel/rail contact and thermal stress from heat induced in braking. The objective of this paper is to estimate the variation and magnitude of the residual stress of railway wheel.

  • PDF

Analysis of Rail Wear Rate according to Wheel/Rail Contact Pressure on Curved Track (곡선부 차륜/레일 접촉압력에 따른 레일마모진전 경향 분석)

  • Sung, Deok-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.4
    • /
    • pp.512-520
    • /
    • 2017
  • On a typical railway, trains travel using the friction between the wheel and the rail. Contact pressure is generated between the wheel and the rail, and the magnitude of the contact pressure changes depending on the weight, speed, wheel-set hunting, and contact point of the vehicle. In this study, the contact characteristics were analyzed through the finite element analysis for the wheel/rail system on curved track, and fatigue damage and wear rate of wheel/rail according to contact pressure were analyzed through rolling contact fatigue test. Results indicate that, general and heat treated rails showed higher wear rate than wheels, and general and heat treated rail wear rate increased rapidly over a certain number of repetitions. In addition, the general rail wear rate was about 7 ~ 15% higher than that of the heat treated rail, and a regression equation for the rail wear rate with the contact pressure in the contact pressure range of 900 ~ 1,500 MPa was presented.