• Title/Summary/Keyword: Contact Material

Search Result 2,520, Processing Time 0.029 seconds

Temperature Dependent Behavior of Thermal and Electrical Contacts during Resistance Spot Welding

  • Kim, E.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • The thermal contact conductance at different temperatures and with different electrode forces and zinc coating morphology was measured by monitoring the infrared emissions from the one dimensionally simulated contact heat transfer experiments. The contact heat transfer coefficients were presented as a function of the harmonic mean temperature of the two contacting surfaces. Using these contact heat transfer coefficients and experimentally measured temperature profiles, the electrical contact resistivities both for the faying interface and electrode-workpiece interface were deduced from the numerical analyses of the one dimension simulation welding. It was found that the average value of the contact heat transfer coefficients for the material with zinc coating (coating weight from 0 g/$mm^2$to 100 g/$mm^2$) ranges from 0.05 W/$mm^2$$^{\circ}C$ to 2.0 W/$mm^2$$^{\circ}C$ in the temperature range above 5$0^{\circ}C$ harmonic mean temperature of the two contacting surfaces. The electrical contact resistivity deduced from the one dimension simulation welding and numerical analyses showed that the ratio of electrical contact resistivity at the laying interface to the electrical contact resistivity at the electrode interface is smaller than one far both bare steel and zinc coated steel.

  • PDF

Formation of high uniformity solder bump for wafer level package by tilted electrode ring (경사진 전극링에 의한 웨이퍼레벨패키지용 고균일도의 솔더범프 형성)

  • Ju, Chul-Won;Lee, Kyung-Ho;Min, Byoung-Gue;Kim, Seong-Il;Lee, Jong-Min;Kang, Young-Il;Han, Byung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.366-369
    • /
    • 2003
  • The vertical fountain plating system with the point contact has been used in semiconductor industry. But the plating shape in the opening of photoresist becomes gradated shape, because bubbles from the wafer surface are difficult to escape from the deep openings, vias. So, we designed the tilted electrode ring contact to get uniform bump height on all over the wafer and evaluated the film uniformity by SEM and $\alpha$-step. A photoresist was coated to a thickness of $60{\mu}m$ and vias were patterned by a contact aligner After via opening, solder layer was electroplated using the fountain plating system and the tilted electrode ring contact system. In $\alpha$-step measurement, film uniformities in the fountain plating system and the tilted electrode ring contact system were ${\pm}16%,\;{\pm}3.7%$ respectively. In this study, we could get high uniformity bumps by the tilted electrode ring contact system. So, tilted electrode ring contact system is expected to improve workability and yield in module process.

  • PDF

THREE DIMENSIONAL FINITE ELEMENT ANALYSIS ON THE MINIMUM CONTACT FRACTION OF BONE-IMPLANT INTERFACE (골조직과 임플랜트 계면의 최소접촉분율에 관한 삼차원 유한요소분석적 연구)

  • Jang, Kyoung-Soo;Kim, Yung-Soo;Kim, Chang-Whe
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.4
    • /
    • pp.627-646
    • /
    • 1997
  • In order to find the degree of osseointegration at bone-implant interface of clinically successful implants, models including the 3.75mm wide, 10mm long screw type $Br{\aa}nemark$ implant as a standard and cylinder, 15mm long, 5.0mm wide, two splinted implants, and implants installed in various cancellous bone density were designed. Also, the amount of load and material of prostheses were changed. The stress and minimum contact fraction were analyzed on each model using three-dimensional finite element method(I-DEAS and ABAQUS version 5.5). The results of this study were as follows. 1. 10mm long, 3.75mm diameter-screw type implant had $36.5{\sim}43.7%$ of minimum contact fraction. 2. Cylinder type implant showed inferior stress distribution and higher minimum contact fraction than screw type. 3. As implant length was increased, minimum contact fraction was increased a little, however, maximum principal stress was decreased. 4. Implants with a large diameter had lower stress value with slightly higher minimum contact fraction than standard screw type. 5. Two splinted implants showed no change of minimum contact fraction. 6. The higher bone density, the lower stress value. 7. The material of occlusal surface had no effect on the stress of the bone-implant interface.

  • PDF

Effect of Native Oxide Layer on the Water Contact Angle to Determine the Surface Polarity of SiC Single Crystals (접촉각 측정방법을 이용한 SiC 단결정의 극성표면 판별에 있어 자연산화막의 영향)

  • Park, Jin Yong;Kim, Jung Gon;Kim, Dae Sung;Yoo, Woo Sik;Lee, Won Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.3
    • /
    • pp.245-248
    • /
    • 2020
  • The wettability of silicon carbide (SiC) crystal, which has 6H-SiC and 4H-SiC regions prepared using the physical vapor transport (PVT) method, is quantitatively analyzed using dispensed deionized (DI) water droplets. Regardless of the polytypes in SiC, the average of five contact angle measurements showed a difference of about 6° between the Si-face and C-face. The contact angle on the Si-face (C-face) is measured after the removal of the native oxide using BOE (6:1), and revealed a significant decrease of the contact angle from 74.9° (68.4°) to 47.7° (49.3°) and from 75.8° (70.2°) to 51.6° (49.5°) for the 4H-SiC and 6H-SiC regions, respectively. The contact angle of the Si-face recovered over time during room temperature oxidation in air; in contrast, that of the C-face did not recover to the initial value. This study shows that the contact angle is very sensitive to SiC surface polarity, specific surface conditions, and process time. Contact angle measurements are expected to be a rapid way of determining the surface polarity and wettability of SiC crystals.

On the Contact Behavior Analysis of an O-ring Seal using NBR and FFKM (NBR and FFKM O-링시일의 접촉거동 해석에 관한 연구)

  • 고영배;황준태;조승현;김청균
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.194-200
    • /
    • 2000
  • The sealing performance of an elastomeric O-ring seal using NBR and FFKM has been analyzed for the contact stress behaviors that develop between the O-ring seal and the surfaces with which it comes into contact. The leakage of an O-ring seal will occur when the pressure differential across the seal just exceeds the initial (or static) peak contact stress. The contact stress behaviors that develop in compressed O-rings, in common case of restrained geometry(grooved), are investigated using the finite element method. The analysis includes material hyperelasticity and axisymmetry. The computed FEM results show that the contact stress behaviors are related to materials of NBR and FFKM and temperature of vaccum chamber.

  • PDF

Contact Stress Analysis of an O-ring Seal in a Dovetail Groove (도브테일 그루브에 장착된 O-링시일의 접촉응력에 관한 연구)

  • 김청균;황준태
    • Tribology and Lubricants
    • /
    • v.16 no.2
    • /
    • pp.138-143
    • /
    • 2000
  • The sealing performance of an elastomeric O-ring seal with a temperature gradient has been analyzed for the contact stress behaviors that develop between the O-ring seal and the housing surfaces with which it comes into contact in the dovetail groove. The leakage of an O-ring seal will occur when the pressure differential across the seal just exceeds the initial peak contact stress. The contact stress behaviors that develop in compressed O-rings, in common case of restrained geometry (grooved), are investigated using the finite element method. The FE analysis includes material hyperelasticity and axisymmetry The computed FEM results show that the contact stress behaviors are related to a compression rate and a temperature gradient between the vacuum chamber with a dovetail groove and the contacting plate with a cooling jacket.

A Study on the Contact Error of Dial Gauge (DIAL GAUGE 측정자의 접촉오차에 관한 연구)

  • 강석수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.138-143
    • /
    • 2000
  • In order to maintain the faith and accuracy with precision of machinery, it is recently required the precise comprehension about approach which is appeared in the contact area between two bodies, because approach affects the static stiffness and dynamic characteristic of contact area. This study applied H. Hertz's circle contact area theory as much lower measuring force. It is measured approach influenced by various factors which were concerned with contact errors like material, form of two bodies, using calibration tester. As a result, the following conclusion can be obtained. 1) The approach appears greatly in order of carbon steel(SM20C), aluminum(A601-T6) and high density polyethylene(5305E) 2) The approach appears in order of concave, disc, convex form, in the ration of contact area size by the difference of curvature.

  • PDF

On the Contact Behavior Analysis of an O-ring Seal including a Temperature Gradient (O-링 시일에서 온도를 고려한 접촉거동 해석에 관한 연구)

  • 고영배;조승현;이영숙;김청균
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.283-288
    • /
    • 1999
  • The sealing performance of an elastomeric O-ring seat with a temperature gradient has been analyzed for the contact stress behaviors that develop between the O-ring seal and the surfaces with which it comes into contact. The leakage of an O-ring seal will occur when the pressure differential across the seal just exceeds the initial (or static) peak contact stress. The contact stress behaviors that develop in compressed O-rings, in common case of restrained geometry (grooved), are investigated using the finite element method. The analysis includes material hyperelasticity and axisymmetry. The computed FEM results show that the contact stress behaviors are related to a compression rate and a temperature gradient between the vacuum chamber with a groove and the contacting plate with a cooling jacket.

  • PDF

Effect of Contact Stiffness on Brake Squeal Analysis Using Analytical FE Squeal Model (스퀼 융합모델을 이용한 접촉부 강성인자에 따른 브레이크 스퀼 영향도 연구)

  • Kang, Jaeyoung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.10
    • /
    • pp.749-755
    • /
    • 2014
  • The analytical-finite element(FE) squeal model is applied to investigate the squeal propensity associated with contact stiffness of the disc brake system. The system contact stiffness is incorporated into the perturbed equations of motion in the analytical manner where the brake components are modeled by FE method. The results show that the contact stiffness of the friction material and the contact stiffness between the pads and caliper are the influential factors on the squeal propensity. Particularly, the modal instability of the 3200 Hz squeal mode drastically changes with respect to the contact stiffness between the pads and caliper.

Rolling Contact Fatigue of Hot-forged Steels out of Prealloyed Powders and Powder Blend

  • Dorofeyev, Vladimir;Sviridova, Anna
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.559-560
    • /
    • 2006
  • Powder forging is used for heavy-loaded parts (rings of rolling-contact bearings, gears etc.) production. Rolling contact fatigue is material property values of which characterize possibility of practical utilization of such parts. Rolling contact fatigue of some steels obtained out of prealloyed powders Astaloy CrM, Atomet 4601, Atomet 4901 and powder blends iron-carbon-nickel by hot forging is studied in the present paper. Effect of various kinds of heat and thermomechanical treatment on rolling contact fatigue is determined. Thermomechanical treatment provides optimal values of rolling contact fatigue. In this case steel structure contains up to 40% of retained metastable austenite which is transformed to martensite on trials. Thus typically crack is generated on residual pores and non-metallic inclusions instead of martensite zones in wrought steels.

  • PDF