• Title/Summary/Keyword: Contact Interface

Search Result 990, Processing Time 0.023 seconds

Tire Inflation Pressures Effects on 3 Directional Contact Pressures Between Soil and Undertread for a Tractor Tire (타이어 공기압이 언더트레이드면의 3방향 접지압에 미치는 영향)

  • 전형규;이규승
    • Journal of Biosystems Engineering
    • /
    • v.26 no.2
    • /
    • pp.123-130
    • /
    • 2001
  • The research described in this paper was aimed toward improving the understanding of the interaction of tire inflation pressure and the soil-tire interface stresses. A three-directional stress transducer was developed to measure stress distribution on undertread for a tractor tire. The transducer can directly measure three-directional stresses (normal stress, tangental stress and lateral stress and lateral stress) simultaneously and has both strong structure and high sensitivity, which is not changed by the abrasion of the detecting plate. Measurements of soil-undertread interface stresses were made at tire center on undertread on a 12.4-R24 radial tractor tire opeated at three combinations of a dynamic load (11.8kN) and three inflation pressures (59kPa, 108kPa and 157kPa). These measurements showed that as inflation pressure increased, the soil-undertread interface stresses increased. The results of three stresses comparisons were shown that the peak normal stresses were considerably higher than the tangential peak stresses and the peak lateral stresses.

  • PDF

Analytical solution of two-layer beam including interlayer slip and uplift

  • Kroflic, Ales;Planinc, Igor;Saje, Miran;Cas, Bojan
    • Structural Engineering and Mechanics
    • /
    • v.34 no.6
    • /
    • pp.667-683
    • /
    • 2010
  • A mathematical model and its analytic solution for the analysis of stress-strain state of a linear elastic two-layer beam is presented. The model considers both slip and uplift at the interface. The solution is employed in assessing the effects of transverse and shear contact stiffnesses and the thickness of the interface layer on behaviour of nailed, two-layer timber beams. The analysis shows that the transverse contact stiffness and the thickness of the interface layer have only a minor influence on the stress-strain state in the beam and can safely be neglected in a serviceability limit state design.

Numerical Study of Droplet Dynamics in a PEMFC Air Flow Channel (고분자전해질형 연료전지의 공기 채널 내에서의 액적 거동에 대한 수치적 연구)

  • Choi, Ji-Young;Son, Gi-Hun
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2390-2395
    • /
    • 2008
  • The water droplet motion in an air flow microchannel with pores through which water emerges is studied numerically by solving the equations governing the conservation of mass and momentum. The gas-liquid interface is tracked by a level set method which is based on a sharp-interface representation for accurately imposing the matching conditions at the interface and is modified to implement the contact angle conditions on the wall and pores. The numerical results show that the droplet growth and detachment pattern depend significantly on the contact angle and inlet air velocity. Also, the dynamic interaction between the droplets growing on multiple pores is investigated. The pore arrangement subject to droplet merging is found to be not effective for water removal.

  • PDF

Surface and Interfacial Energetic Analysis of Amphiphilic Copolymers

  • Kim, Min-Kyun;Yuk, Soon-Hong;Jhon, Mu-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.3
    • /
    • pp.158-161
    • /
    • 1987
  • A Series of hydrophilic-hydrophobic copolymeric surfaces of 2-hydroxyethyl methacrylate (HEMA) and various alkyl methacrylate (RMA) have been prepared by in-situ solution copolymerization using a redox radical initiator. Contact angles of various probing fluids on the polymeric surfaces were determined in air (hydrophobic environment) and under water (hydrophilic environment). From contact angle data, the dispersive interaction contribution (${\gamma}^d_s$) and the polar contribution (${\gamma}^p_s$) to the total surface free energy (${\gamma}^d_s$) and interfacial energetic quantities (e.g., water-polymer, liquid-polymer interface, etc.) were estimated by surface and interface physicochemical theory. From the comparison of surface energetic components between hydrophobic and hydrophilic media, it is found that surface and interface energetic components of polymeric surface as a representative low-energy surface are highly dependent on environmental fluids. Also, from the correlation between interfacial energetic results and surface energetic criterion of biocompatibility, we found that HEMA/BMA, HEMA/HMA copolymer systems are in the region of biocompatibility.

Precise Static Contact Angle Measurements Using Pythagolas Rule (피타고라스 원리를 이용한 정적 접촉각 정밀 각도 측정방법)

  • Choi, Jin-Yeong;Kwon, Dong-Jun;Wang, Zuo-Jia;Shin, Pyeong-Su;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.15 no.2
    • /
    • pp.57-62
    • /
    • 2014
  • Pythagolas rule was used for investigation of static contact angle in particular figures. Static contact angle measurement was important to evaluate the wettability between solid and liquid. Optimum measurement method and standardization of calculation for static contact angle were investigated for practical application. Optimum diameter of droplet for static contact angle measurement was confirmed as 1 mm. Contact angle measurement using Pythagolas rule was also used to calculate advancing, receding angle and wettability of different surface condition. At last, it was concluded that the Pythagolas rule method was more accurate than general lineation method for static contact angle measurement.

Feasibility Study of Laser Contact Angle Measurement for Nano-fiber Characterization (나노섬유의 특성분석을 위한 레이저 접촉각 측정기의 효율성 연구)

  • 신경인;안선훈;김성훈
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.27 no.5
    • /
    • pp.554-559
    • /
    • 2003
  • A newly developed contact angle measurement instrument by laser beam projection allows for rapid and direct determination of contact angles. The instrument may have a possibility to characterize newly developed nano-fibers. When the laser beam impinges on an edge of an interface of liquid and solid, projected beam were split across and made two straight lines on a tangent screen. From the result, it could measure the contact angle directly by reading the angle between two split beams. The purpose of this study was to prove reliability and reproducibility of the contact angle measurement instrument by laser beam projection compare to the conventional one by microscope through the comparative experiment and questionnaire. Test samples were selected by consideration of hydrophilic and hydrophobic, such as nylon 6 and polypropylene, respectively. The laser contact angle measurement has accurate, fast and convenient method to measure contact angle, and it can be a unique method to characterize nano-fibers.

Dependance of Ionic Polarity in Semiconductor Junction Interface (반도체 접합계면이 가스이온화에 따라 극성이 달라지는 원인)

  • Oh, Teresa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.709-714
    • /
    • 2018
  • This study researched the reasons for changing polarity in accordance with junction properties in an interface of semiconductors. The contact properties of semiconductors are related to the effect of the semiconductor's device. Therefore, it is an important factor for understanding the junction characteristics in the semiconductor to increase the efficiency of devices. For generation of various junction properties, carbon-doped silicon oxide (SiOC) was deposited with various argon (Ar) gas flow rates, and the characteristics of the SiOC was varied based on the polarity in accordance with the Ar gas flows. Tin-doped zinc oxide (ZTO) as the conductor was deposited on the SiOC as an insulator to research the conductivity. The properties of the SiOC were determined from the formation of a depletion layer by the ionization reaction with various Ar gas flow rates due to the plasma energy. Schottky contact was good in the condition of the depletion layer, with a high potential barrier between the silicon (Si) wafer and the SiOC. The rate of ionization reactions increased when increasing the Ar gas flow rate, and then the potential barrier of the depletion layer was also increased owing to deficient ions from electron-hole recombination at the junction. The dielectric properties of the depletion layer changed to the properties of an insulator, which is favorable for Schottky contact. When the ZTO was deposited on the SiOC with Schottky contact, the stability of the ZTO was improved by the ionic recombination at the interface between the SiOC and the ZTO. The conductivity of ZTO/SiOC was also increased on SiOC film with ideal Schottky contact, in spite of the decreasing charge carriers. It increases the demand on the Schottky contact to improve the thin semiconductor device, and this study confirmed a high-performance device owing to Schottky contact in a low current system. Finally, the amount of current increased in the device owing to ideal Schottky contact.

Changes in Interface Properties of TCO/a-Si:H Layer by Zn Buffer Layer in Silicon Heterojunction Solar Cells (실리콘 이종접합 태양전지의 Zn 확산방지층에 의한 TCO/a-Si:H 층간의 계면특성 변화)

  • Tark, Sung-Ju;Son, Chang-Sik;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.341-346
    • /
    • 2011
  • In this study, we inserted a Zn buffer layer into a AZO/p-type a-si:H layer interface in order to lower the contact resistance of the interface. For the Zn layer, the deposition was conducted at 5 nm, 7 nm and 10 nm using the rf-magnetron sputtering method. The results were compared to that of the AZO film to discuss the possibility of the Zn layer being used as a transparent conductive oxide thin film for application in the silicon heterojunction solar cell. We used the rf-magnetron sputtering method to fabricate Al 2 wt.% of Al-doped ZnO (AZO) film as a transparent conductive oxide (TCO). We analyzed the electro-optical properties of the ZnO as well as the interface properties of the AZO/p-type a-Si:H layer. After inserting a buffer layer into the AZO/p-type a-Si:H layers to enhance the interface properties, we measured the contact resistance of the layers using a CTLM (circular transmission line model) pattern, the depth profile of the layers using AES (auger electron spectroscopy), and the changes in the properties of the AZO thin film through heat treatment. We investigated the effects of the interface properties of the AZO/p-type a-Si:H layer on the characteristics of silicon heterojunction solar cells and the way to improve the interface properties. When depositing AZO thin film on a-Si layer, oxygen atoms are diffused from the AZO thin film towards the a-Si layer. Thus, the characteristics of the solar cells deteriorate due to the created oxide film. While a diffusion of Zn occurs toward the a-Si in the case of AZO used as TCO, the diffusion of In occurs toward a-Si in the case of ITO used as TCO.