• Title/Summary/Keyword: Contact Algorithm

Search Result 572, Processing Time 0.022 seconds

An elastic contact algorithm in SPH by virtual work principle (SPH에 가상일 원리를 적용한 탄성 접촉 알고리즘)

  • Seo, Song-Won;Min, Oak-Key
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1346-1351
    • /
    • 2003
  • There is few research about contact problem in SPH because it is primarily suitable to analyze the large deformation problem. However, an elasto-plastic problem with small deformation need to be considered about contact characteristics. The numerical formulating methods for SPH is induced to be able to obtain solutions based on a variational method in contact problem. The contact algorithm presented is applied to the elastic impact problem in 1D and 2D. The results show thai an imaginary tension and a numerical instability which happen in impacting between different materials can be removed and contact forces which could not have been calculated are able to obtain.

  • PDF

Simulation of the Dynamic Interactions between Catenary and Pantograph (전차선과 팬터그래프 사이의 동적 상호작용 시뮬레이션)

  • Kwon, Sam-Young;Kim, Gil-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.455-459
    • /
    • 1995
  • Catenary/pantograph system consists of overhead lines which have non-uniform elasticity and pantographs which move at high speed and give force to the lines, therefore happen to be failed in contacts between both from time to time. In this study, as the first step to develop a dynamic simulation program, the general theory is discussed for catenary/pantograph system and appropriate modelling. And comparison is conducted with the references after making a program which referred to the contact force equation algorithm. On this algorithm, the unknown contact force is computed by the equations which was induced as combining catenary and pantograph motion equations expressed in finite difference form. Another simulation program based on the assumed contact forces algorithm was developed. In this algorithm, numerical integraion of both the overhead line and pantograph equations, which without combining, are effected for two assumed values of contact force. The correct contact force is then obtained from these two sets of results by linear interpolation to satisfy the contact condition. Through the comparative review on the outputs from this program, it is verified that this algorithm is reliable.

  • PDF

Multibody Elastic Contact Analysis by Modified Linear Programming (수정된 선형계획법을 이용한 다물체 탄성 접촉 문제 해석)

  • 이대희;전범준;최동훈;임장근;윤갑영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 1989
  • A general and efficient algorithm is proposed for the analyses of multibody elastic contact problems. It is presumed that there exists negligible friction between the bodies. It utilizes a simplex type algorithm with a modified entry rule and incoporates finite element method to obtain flexibility matrices for arbitrarily shaped bodies. The multibody contact problem of a vehicle support on an elastic foundation is considered first to show the effictiveness of the suggested algorithm. Its solution is compared favorably with the existing solution. A contact problem among inner race, rollers and outer race is analyzed and the distribution of load, rigid body movements and contact pressure distributions are obtained. The trend of contact characteristics is compared with that of the idealized Hertzian solutions for two separate two-body contact problems. The numerical results obtained by directly treating a multibody contact are believed to be more exact than the Hertzian solution for the idealized two separate two-body contact problems.

A Driving Algorithm for a Switched Reluctance type Contact-Free Linear Stage (Switched Reluctance 형 비접촉 선형 스테이지를 위한 구동 알고리즘)

  • Lee Sang-Heon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.85-92
    • /
    • 2006
  • Recently in the field of precision positioning device, the contact-free stages are gaining focuses with their outstanding performances by eliminating mechanical frictions. This paper presents the driving algorithm for contact-free linear stage based on switched reluctance principle. The proposed driving algorithm has a similar structure of that of switched reluctance motor but this study has its own originality in terms of reducing the normal farces and force ripple at the same time. The simulation and experiment are executed to verify the proposed algorithm.

A Hierarchical Contact Searching Algorithm in Sheet Forming Analysis (박판성형공정해석에서의 계층적 접촉탐색 알고리즘 적용)

  • 김용환
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.22-25
    • /
    • 1999
  • A dynamic explicit finite element code for simulating sheet forming processes has been developed The code utilises the discrete Kirchhoff shell element and contact force is treated by a conventional penalty method. In order to reduce the computational cost a new and robust contact searching algorithm has been developed and implemented into the code. in the method a hierarchical structure of tool segments called a tree structure is built for each tool at the initial stage of the analysis Tree is built in a way to divide a trunk to 8 sub-trunk 2 in each direction until the lowest level of the tree(leaf) contains exactly one segment of the tool. In order to have a well-balanced tree each box on each sub level contains one eighth of the segments. Then at each time step contact line from a node comes out of the surface of the tool. Simulation of various sheet forming processes were performed to verify the validity of the developed code with main focus on he usefulness of the developed contact searching algorithm.

  • PDF

A Study on the Elastic-Plastic Contact Problem for Large Deformation (대변형 탄소성 접촉문제에 관한 연구)

  • Jeon, Byung-Hee;Kim, Dong-Won
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1658-1667
    • /
    • 1993
  • In this research, a numerical algorithm has been developed, which can be applied to the large deformation and large displacement contact problems between two deformable bodies. The contact conditions expressed in terms of the rate of angle change have been proposed considering the change in geometric shape and rate of contact force. A set of linear simultaneous equations is constructed by adding the geometric shape change and contact conditions to the original stiffness matrix. A new method to determine time increment has been proposed based on Euler method, in which the condition to prevent the contact bodies from penetrating and overrunning each other has been taken into consideration. Practical application to contact problem is extrusion in which bodies are sliding along the contact boundary.

Multi-Point Contact Analysis of Two Bodies in Plane (평면에서의 임의 형상을 갖는 물체의 다점 접촉 해석)

  • Jeon, Gyeong-Jin;Park, Su-Jin;Son, Jeong-Hyeon;Yu, Wan-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1631-1637
    • /
    • 2002
  • This paper presents a method for calculating contact force between bodies on plane. At each integration time step, the proposed method finds expected contact point on their outlines and then calculates penetration, velocity of penetration and contact force. This paper adopts continuous analysis method and multi-point contact method to calculate contact force. To obtain the accurate expected contact point on their outlines, a new algorithm is developed. The accuracy of the proposed algorithm is demonstrated by comparing the numerical results of the proposed method and DADS.

Contact Modeling of Arbitrary Shaped Bodies in Space (공간상에서 자유 곡면 물체의 접촉 모델링)

  • Park, Su-Jin;Shin, Ki-Bong;Sohn, Jeong-Hyun;Yoo, Wan-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.544-550
    • /
    • 2003
  • The contact analyses of arbitrary shaped spatial bodies are important in the study of multi-body dynamics. This paper presents a method fur calculating contact force between bodies in space. At each integration time step, the proposed method finds potential contact points on bodies and then calculates the penetration, the velocity of penetration, and the contact force. A continuous analysis method is adopted to calculate the contact force. To get contact points accurately on their outlines, a new algorithm is developed. The proposed algorithm is tested and compared the results of DADS. As applications, the contact of two steel balls, spatial pendulums, and the problem of a ball and bat are demonstrated.

Thermo-mechanical Contact Analysis on Disk Brakes by Using Simplex Algorithm

  • Cho, C.;Sun, Chan-Woong;Kim, Ju-Yong
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.399-400
    • /
    • 2002
  • A numerical procedure for analyzing thermo-elastic contact applied to an automotive disk brake and calculating subsurface stress distribution has been developed. The proposed procedure takes the advantage of the simplex algorithm to save computing time. Flamant's solution and Boussinesq's solution are adopted as Green function in analysis. Comparing the numerical results with the exact solutions has proved the validity of this procedure.

  • PDF

The Development of Program for Time Domain Simulation of Railway Dynamics (철도차량 동역학의 시간영역 시뮬레이션 프로그램 개발)

  • No, Chang-Su
    • 한국기계연구소 소보
    • /
    • s.18
    • /
    • pp.87-97
    • /
    • 1988
  • The algorithm for relation of contact status, track shift, and contact force caused from wheel/rail contact geometry is presented. Grafting this algorithm into a algorithm of general program analyzing mechanical system, the program for time domain simulation of railway vehicle dynamics, called CASOTD, was developed. In addition, as applied example of CASOTD, the dynamic simulation of railway vehicle running on a rail joint and a irregularly alinemented rail is done in this paper.

  • PDF