• Title/Summary/Keyword: Construction-step behavior

Search Result 91, Processing Time 0.03 seconds

Study on the efficient dynamic system condensation (동적 해석의 효율적 축소 기법에 관한 연구)

  • Baek, Sung-Min;Cho, Meang-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.631-636
    • /
    • 2007
  • Eigenvalue reduction schemes approximate the lower eigenmodes that represent the global behavior of the structures. In the, we proposed a two-level condensation scheme(TLCS) for the construction of a reduced system. In first step, the of candidate elements by energy estimation, Rayleigh quotient, through Ritz vector calculation, and next, the primary degrees of freedom is selected by sequential elimination from the degrees of freedom connected the candidate elements in the first step. In the present study, we propose TLCS combined with iterative improved reduced system(IIRS) to increase accuracy of higher modes intermediate range. Also, it possible to control the accuracy of the eigenvalues and eigenmodes of the reduced system. Numerical examples demonstrate performance of proposed method.

  • PDF

Improvement of Soft Marine Clay by Preloading and Wick Drain Method (선행하중과 Wick Drain공법에 의한 연약해성광토의 개량)

  • 유태성;박광준
    • Geotechnical Engineering
    • /
    • v.3 no.1
    • /
    • pp.7-24
    • /
    • 1987
  • Preloading surcharge method along with vertical drains was adopted to improve the performance of a very soft marine clay deposit. The onshore deposit, located in the Ulsan Bay area, consists of a 2 to 10m thick, very soft, highly compressible marine clay layer developed just below. the sea water level. The initial undrained shear strength of the clay layer was about 0.6 ton/m2. But, the deposit was designed after treatment to support some auxiliary facilities for a new ilo refinery plant, requiring bearing capacities of 3.6 to 5.4 ton/m2 and maximum allowablee settlement of less than 7.5cm. A total of 35, 000 wick drains Ivas installed to expedite drainage during preloading, and surcharge loads of up to 5m above the original ground level were applied in a step-by-step loading sequence to prevent ground failure by excess surcharge loads. An extensive program of field instrumentation was implemented to monitor the behavior of the clay deposit. Measurers!ends included settlements, excess pore pressure and its dissipation, ground farmer level fluctuation, and lateral movement of the so(t clay layer under the preloads. This paper describes the design concepts, construction methods and control procedures used for improvement of the clay layer. It also presents the ground behavior measured during construction, rind comparisons with theoretical predictions.

  • PDF

Experimental study on long-term behavior of RC columns subjected to sustained eccentric load

  • Kim, Chang-Soo;Gong, Yu;Zhang, Xin;Hwang, Hyeon-Jong
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.289-299
    • /
    • 2020
  • To investigate the long-term behavior of eccentrically loaded RC columns, which are more realistic in practice than concentrically loaded RC columns, long-term eccentric loading tests were conducted for 10 RC columns. Test parameters included concrete compressive strength, reinforcement ratio, bar yield strength, eccentricity ratio, slenderness ratio, and loading pattern. Test results showed that the strain and curvature of the columns increased with time, and concrete forces were gradually transferred to longitudinal bars due to the creep and shrinkage of concrete. The long-term behavior of the columns varied with the test parameters, and long-term effects were more pronounced in the case of using the lower strength concrete, lower strength steel, lower bar ratio, fewer loading-step, higher eccentricity ratio, and higher slenderness ratio. However, in all the columns, no longitudinal bars were yielded under service loads at the final measuring day. Meanwhile, the numerical analysis modeling using the ultimate creep coefficient and ultimate shrinkage strain measured from cylinder tests gave quite good predictions for the behavior of the columns.

Evaluation of 3D printability of cementitious materials according to thixotropy behavior

  • Lee, Keon-Woo;Choi, Myoung Sung
    • Advances in concrete construction
    • /
    • v.11 no.2
    • /
    • pp.141-149
    • /
    • 2021
  • This study is a basic research for evaluating the buildability of cementitious materials for three-dimensional (3D) printing. In the cement paste step, the thixotropy behavior according to the resting time, which represents the time interval between each layer, was analyzed. In addition, the relationship between the thixotropy behavior and 3D concrete printing buildability was derived by proposing a measurement method that simulates the 3D concrete printing buildup process. The analysis of the tendency of the thixotropy behavior according to the resting time revealed that the area of the hysteresis loop (AHyst) showed a tendency to increase and then converge as the resting time increased, which means hysteresis loop approach critical resting time for sufficient buildability. In the thixotropy behavior analysis that simulates the 3D concrete printing buildup process, the buildup ratio, which is the recovery rate of the shear stress, showed a tendency to increase and then converge as the resting time increased, which are similar results like hysteresis loop. It was concluded that AHyst and the buildup ratio can be used as parameters for determining the resting time, and they have close relationships with 3D concrete printing buildability.

Prediction behavior of the concentric post-tensioned anchorage zones

  • Shangda Chen;Linyun Zhou
    • Advances in concrete construction
    • /
    • v.16 no.4
    • /
    • pp.217-230
    • /
    • 2023
  • Methods for designing the post-tensioned anchorage zones at ultimate limit state has been specified in current design codes based on strut-and-tie models (STM). However, it is still not clear how to estimate the serviceability behavior of the anchorage zones. The serviceability is just indirectly taken into account by means of the reasonable reinforcement detailing. To address this issue, this paper is devoted to developing a modified strut-and-tie model (MSTM) to predict the behavior of concentric anchorage zones throughout the loading process. The principle of stationary complementary energy is introduced into STM at each load step to satisfy the compatibility condition and generate the unique MSTM. The structural behavior of anchorage zones can be achieved based on MSTM from loading to failure. Simplified formulas have been proposed to estimate the first cracking load, bearing capacity and maximum crack width with the consideration of the details of reinforcement bursting bars. The proposed model provides a definite method to control the bursting crack width in concentric anchorage zones. Four specimens with different bearing plate ratios have been designed and tested to validate the proposed method.

Flexural Behavior of Segmental U-Girder and Composite U-Girder Using Ultra High Performance Concrete (초고강도 섬유보강 콘크리트를 사용한 분절형 U거더 및 합성 U거더의 휨거동)

  • Lee, Seung-Jae;Makhbal, Tsas-Orgilmaa;Kim, Sung-Tae;Han, Sang-Mook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.290-297
    • /
    • 2017
  • The flexural behavior tests of UHPC segmental U-girder and composite U-girder which has 160MPa compressive strength and 15.4m length were carried out. The test variables are volume fraction of steel fibers and slab over the U-girder. Each U-girder has longitudinal re-bars in web and lower flange. PS tendons which has 2 of 15.2mm diameter in upper flange and PS tendons which has 7 of 15.2mm diameter in lower flange were arranged and prestressed at onetime in U-girder connection stage. Enough strong prestressing force which applied to U-girder due to ultra high performance concrete strength can withstand the self weight and dead load in U-girder stage. By comparison with the brittle behavior of U-girder, composite U-girder showed the stable and ductile behavior. After the construction of slab over U-girder, flexural load capacity of composite U-girder can bear the design load in final construction stage with only one time prestressing operation which already carried out in U-girder stage. This simple prestressing method due to the ultra high strength concrete have the advantage in construction step and cost. The shear key which has narrow space has the strong composite connection between ultra high strength concrete U-girder and high strength concrete slab didn't show any slip and opening right before failure load.

Behavior of Concrete-Filled Square Steel Tubular Column to H-Beam Connections using Angles (앵글을 이용한 콘크리트충전 각형강관기둥-H형강보 접합부의 거동)

  • Lee, Jae Seung;Kim, Jae Keon;Shin, Kyung Jae;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.191-199
    • /
    • 1999
  • This paper is the first step on the study of the industrialization of the mid-story steel building structures. The purpose of this study is to investigate the structural behavior of concrete-filled square steel tubular column to H-beam connections using angles and high tension bolts. The tests are carried out with five types of specimens under static loading and the main parameter is the thickness of angles. Yield-line theory which obtains connection strength by way of the lowest value based on upper-limit theory is applied to predict strength formulas.

  • PDF

Field Measurements with the Construction of Cut and Cover Tunnel (복개 터널구조물의 현장 시공에 따른 계측 분석 사례)

  • 박시현;이석원;이규필;배규진;전오성;이종성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.149-156
    • /
    • 2002
  • Field measurements were carried out in this study to investigate the behavior of cut and cover tunnel such as the distribution and the magnitude of the earth pressure during back fill process of the ground material. Three kinds of measuring instruments, such as the earth pressure load cell, the concrete strain gauge and the reinforcing bar meter of embedded type in concrete structure were installed and measured. Earth pressure load cells, installed after construction of the tunnel lining, measure the outside forces acting on the tunnel lining with radial directions. Three load cells were installed at the crown, the right and the left shoulder of the tunnel, respectively. Three sets of reinforcing bar meter were installed in the double reinforcements of the tunnel lining and their locations were the same with the position of the earth pressure load cells. Concrete strain gauge was installed only one site of the upper compressive part at the tunnel crown. Based on the measuring results in the field, the deformation and the earth pressure acting on the tunnel lining were investigated with the back fill process of the ground material. Considerations on the validity of the measuring results were paid. For the analysis of measurements, after dividing back fill process into three steps, various factors which affect on the behavior of tunnel lining were investigated at each step.

  • PDF

Analysis of Residual Settlement of Concrete Track Roadbed for High-Speed Railway (고속철도 콘크리트궤도 토공노반의 잔류침하 분석)

  • Lee, Il-Wha;Lee, Sung-Jin;Kwon, Oh-Jung;Jeong, Uhn-Ghi
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.369-374
    • /
    • 2007
  • An active application of concrete track is being expected for the future construction of Korean railroad. For the successful concrete track construction and design in earthwork areas, the residual settlement should be reasonably estimated using the proper method. The concrete track is extremely vulnerable to the damage of residual settlement. However, at the transition areas such as bridge approach, differential settlement will likely occur due to difference of stiffness, poor drainage and poor ground treatment. The maintenance is very difficult for excessive settlement on existing line, it is need to constrain the residual settlement in step of design. In this paper, it is performed the analysis of the residual settlement measured data, test results and reference to understand the residual settlement behavior of concrete track roadbed

  • PDF

Study of Determination of Allowable Residual Settlement of Concrete Track Roadbed for High-Speed Railway (콘크리트궤도 토공노반의 허용잔류침하량 결정에 관한 연구)

  • Lee, Il-Wha;Yang, Shin-Chu;Jang, Seung-Yup
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1121-1125
    • /
    • 2007
  • An active application of concrete track is being expected for the future construction of Korean railroad. For the successful concrete track construction and design in earthwork areas, the residual settlement should be reasonably estimated using the proper method. The concrete track is extremely vulnerable to the damage of residual settlement. However, at the transition areas such as bridge approach, differential settlement will likely occur due to difference of stiffness, poor drainage and poor ground treatment. The maintenance is very difficult for excessive settlement on existing line, it is need to constrain the residual settlement in step of design. In this paper, it is performed the determination of the allowable residual settlement through various study to understand the residual settlement behavior of concrete track roadbed.

  • PDF