• Title/Summary/Keyword: Construction level

Search Result 4,377, Processing Time 0.032 seconds

A study on the optimal reinforcement area for excavation of a small cross-section shield TBM tunnel in fault fracture zone through parameter analysis (매개변수 분석을 통한 단층파쇄대의 소단면 쉴드 TBM 터널 굴착 시 최적 보강영역 연구)

  • Kang, Byung-Yun;Park, Hyung Keun;Cha, Jae-Hoon;Kim, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.3
    • /
    • pp.261-275
    • /
    • 2020
  • When excavating a small cross-section tunnel in a fault fracture zone using the shield TBM method, there is a high possibility of excessive convergence and collapse. Appropriate ground reinforcement is required to minimize construction cost loss and trouble due to a fault fracture zone. In this study, the optimal reinforcement area was suggested and the surrounding ground behavior was investigated through numerical analysis using MIDAS GTS NX (Ver. 280). For the parameters, the width of the fault fracture zone, the existence of fault gouge, and the groundwater level and depth of cover were applied. As a result, when there is not fault gouge, the convergence and ground settlement are satisfied the standard when applying ground reinforcement by up to 0.5D. And, due to the high permeability coefficient, it is judged that it is necessary to apply 0.5D reinforcement. There is a fault gouge, it was possible to secure stability when applying ground reinforcement between the entire fault fracture zone from the top of the tunnel to 0.5D. And, because the groundwater discharge occurred within the standard value due to the fault gouge, reinforcement was unnecessary.

An Empirical Study on Korea's Open and Integrated Counter-Terrorism System (한국의 개방・통합형 대테러시스템에 관한 실증적 연구)

  • Kwon, Jeong-Hoon
    • Korean Security Journal
    • /
    • no.57
    • /
    • pp.137-156
    • /
    • 2018
  • The purpose of this study is to analyze the current status of counter terrorism system and to identify the causes of problems and to suggest alternatives by selecting legal and operational sectors based on theories of open systems and integrated systems. According to the results of the research, first, the degree of agreement on the open system and the integrated system is low with regard to the characteristics of the counter-terrorism system. Second, in relation to the importance and necessity of major factors of construction and operation of counter-terrorism system, counter-terrorism workers recognize that it is the most important and necessary. In the case of strengthening international cooperative system, the difference of recognition between importance and necessity was the biggest. The importance and necessity of reviewing the Anti-Terrorism Act for the protection of the public and public safety were relatively low, and the cooperation with the private sector showed the lowest importance and necessity. In the case of academic achievement, the average level of high school graduates is higher than that of professional high school graduates. Therefore, this research concludes that counter terrorism operation system with open and integrated system has to be applied to national counter terrorism operation structure in South Korea in increasing the quality and efficiency of nation counter terrorism response capability.

Construction of Measuring System for Magnetic Properties Measurement of Azimuth Angle Sensor (방위각센서의 자기특성 측정 장치 제작)

  • Son, Derac
    • Journal of the Korean Magnetics Society
    • /
    • v.24 no.1
    • /
    • pp.22-27
    • /
    • 2014
  • North indicating azimuth angle sensors have been used in airplanes, ships traditionally and nowadays employed in smart phones. For the azimuth and roll angle measurement of the sensor, 3-axis acceleration sensor was added to the 3-axis magnetic field sensor. In this work, we have constructed a measuring system for the measurement of the magnetic field and the angle uncertainty of the magnetic field sensors. Measuring system could be useful not only in non-magnetic laboratory but also in normal laboratory, we constructed small size of 3-axis Helmholtz coils for the compensation environment magnetic field (Earth magnetic field and magnetic field from building) and the generation of magnetic field for the test of magnetic field sensor. The constructed measuring system could compensate environment magnetic field below 10 nT level and generate 3-dimensional magnetic field with magnitude uncertainty of 0.2 % and angle error of $0.2^{\circ}$ within the volume of ${\pm}30mm$ diameter at center of Helmholtz coils. For the conformation of developed measuring system, We tested commercially available 3-axis magnetometer and heading sensor.

A study on the smoke control performance of the damper exhaust system at FCEV fire in tunnel for small vehicles (소형차 전용터널 내 수소연료전지차 화재시 집중배기방식의 제연성능에 관한 연구)

  • Hong, Seo-Hee;Baek, Doo-San
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.745-756
    • /
    • 2022
  • The road tunnel is a semi-closed space that is blocked on all sides except the entrance and exit, and in the event of a fire, the smoke of the fire spreads longitudinally due to heat buoyancy caused by the fire and air currents that always exist in the tunnel. To solve this problem, smoke removal facilities are installed in road tunnels to secure a safe evacuation environment by controlling the direction of movement of smoke or directly smoking at fire points. In urban areas, the service level of urban roads decreases due to the increase in traffic due to the increase in population, and as a solution, the construction of underground roads in urban areas is increasing. When a fire occurs during hydrogen leakage through TPRD of a hydrogen fuel cell vehicle (FCEV), the fire intensity depends on the amount of leakage, and the maximum fire intensity depends on the orifice diameter of the TPRD. Considering the TPRD orifice diameter of 1.8 mm, this study analyzed the diffusion distance of fire smoke according to the wind speed of the roadway and the opening interval of the large exhaust port when the maximum fire intensity was 15 MW. As a result, it was analyzed that air flow in the tunnel could be controlled if the wind speed of the road in the tunnel was less than 1.25 m/s, and smoke could be controlled within 200 m from the fire if the damper interval was 50 m and 100 m.

A Study on the Improvement Measures for the Management and Utilization of Korea's Fiscal Government Data: Focusing on Fiscal Data Governance (재정데이터의 관리 및 활용을 위한 개선방안 연구: 재정데이터 거버넌스를 중심으로)

  • Song, Seok-Hyun
    • Informatization Policy
    • /
    • v.28 no.3
    • /
    • pp.95-111
    • /
    • 2021
  • To achieve a data-driven policy decision-making system, the Ministry of Strategy and Finance has formed a marketing team and is actively building upon it. This system, currently under construction, will enable data-driven financial tasks beyond simple financial administration. The U.S. has already enacted The Foundations for Evidence-Based Policymaking Act in the process of similar pursuits. Since last year, the data-driven system administrative law has been enacted in Korea, and a legal framework has been established for data-driven administrative work. The next-generation budget accounting system to fulfill its role as a data-driven system needs public policy support to operate. Innovation and transformation are needed in various areas such as data management, legal system, and installation of related systems. Accordingly, it is very timely to analyze the financial systems and policies of advanced countries such as the U.S. and U.K., which already have established and operates such a financial system. By benchmarking and applying existing financial information systems to the next-generation budget accounting system, a better system will result. In this study, major developed countries, including the U.S., U.K., France, and Canada were benchmarked and analyzed in terms of the main elements of data governance: public policy, systems, legal framework, promotion system, and service level. It was discovered that the role and direction of the national fiscal policy system that the people favor should be able to respond quickly to the recent difficult economic crisis environment such as the digital transformation trend and COVID-19.

Xanthan Gum Reduces Aluminum Toxicity in Camelina Roots (잔탄검 혼합에 따른 카멜리나 뿌리의 알루미늄 독성 경감 효과)

  • Shin, Jung-Ho;Kim, Hyun-Sung;Kim, Sehee;Kim, Eunsuk;Jang, Ha-young;Ahn, Sung-Ju
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.3
    • /
    • pp.135-142
    • /
    • 2021
  • Biopolymers have been known as eco-friendly soil strengthening materials and studied to apply levees. However, the effect of biopolymer on vegetation is not fully understood. In this study, we analyzed the root growth of Camelina sativa L. (Camelina) when the xanthan gum was amended to soil in Aluminum (Al) stress conditions. Amendment of 0.05% xanthan gum increased root growth of Camelina under Al stress conditions. Under the Al stress condition, expression of aluminum activate malate transporter 1 (ALMT1) gene of Camelina root was induced but showed a lower level of expression in xanthan gum amended soil than non-amended soil. Additionally, the binding capacity of xanthan gum with Al ions in the solution was confirmed. Using morin staining and ICP-OES analysis, the Al content of the roots in the xanthan gum soil was lower than in the non-xanthan gum soil. These results suggest that xanthan gum amended soils may reduce the detrimental effects of Al on the roots and positively affect the growth of plants. Therefore, xanthan gum is not only an eco-friendly construction material but also can protect the roots in the disadvantageous environment of the plant.

The Effects of Road Geometry on the Injury Severity of Expressway Traffic Accident Depending on Weather Conditions (도로기하구조가 기상상태에 따라 고속도로 교통사고 심각도에 미치는 영향 분석)

  • Park, Su Jin;Kho, Seung-Young;Park, Ho-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.2
    • /
    • pp.12-28
    • /
    • 2019
  • Road geometry is one of the many factors that cause crashes, but the effect on traffic accident depends on weather conditions even under the same road geometry. This study identifies the variables affecting the crash severity by matching the highway accident data and weather data for 14 years from 2001 to 2014. A hierarchical ordered Logit model is used to reflect the effects of road geometry and weather condition interactions on crash severity, as well as the correlation between individual crashes in a region. Among the hierarchical models, we apply a random intercept model including interaction variables between road geometry and weather condition and a random coefficient model including regional weather characteristics as upper-level variables. As a result, it is confirmed that the effects of toll, ramp, downhill slope of 3% or more, and concrete barrier on the crash severity vary depending on weather conditions. It also shows that the combined effects of road geometry and weather conditions may not be linear depending on rainfall or snowfall levels. Finally, we suggest safety improvement measures based on the results of this study, which are expected to reduce the severity of traffic accidents in the future.

Estimation of stream flow discharge using the satellite synthetic aperture radar images at the mid to small size streams (합성개구레이더 인공위성 영상을 활용한 중소규모 하천에서의 유량 추정)

  • Seo, Minji;Kim, Dongkyun;Ahmad, Waqas;Cha, Jun-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.12
    • /
    • pp.1181-1194
    • /
    • 2018
  • This study suggests a novel approach of estimating stream flow discharge using the Synthetic Aperture Radar (SAR) images taken from 2015 to 2017 by European Space Agency Sentinel-1 satellite. Fifteen small to medium sized rivers in the Han River basin were selected as study area, and the SAR satellite images and flow data from water level and flow observation system operated by the Korea Institute of Hydrological Survey were used for model construction. First, we apply the histogram matching technique to 12 SAR images that have undergone various preprocessing processes for error correction to make the brightness distribution of the images the same. Then, the flow estimation model was constructed by deriving the relationship between the area of the stream water body extracted using the threshold classification method and the in-situ flow data. As a result, we could construct a power function type flow estimation model at the fourteen study areas except for one station. The minimum, the mean, and the maximum coefficient of determination ($R^2$) of the models of at fourteen study areas were 0.30, 0.80, and 0.99, respectively.

Geological Heritage Value and Appropriate Conservation/Utilization of the Seokgaejae Early Paleozoic Sedimentary Stratal Section (석개재 전기 고생대 퇴적층 단면의 지질유산적 가치와 보전 및 활용방안)

  • Lee, Seung-Bae
    • Korean Journal of Heritage: History & Science
    • /
    • v.50 no.3
    • /
    • pp.126-145
    • /
    • 2017
  • The Seokgaejae section is located along a timber access road and a driveway across Bonghwa County, North Gyeongsang Province, and Samcheog city, Gangwon Province. Its stratigraphic column shows all of the ten strata of the lower Paleozoic Taebaek Group, Joseon Supergroup. The Seokgaejae section is proved to be scientifically important. Thirty-eight domestic/international journal papers have been published on this early Paleozoic stratigraphic site, and many distinguished researchers over the world have visited the site. However, the section has never been considered to be designated as a national natural monument and was not included in the adjacent Gangwon Paleozoic National Geopark due to management or administrative issues. Although the Seokgaejae section sufficiently satisfies many of the national natural monument criteria, designation for the natural monument may not be justified because of the facts that the outcrop was artificially exposed by road construction; the chance of destruction of the outcrop is relatively few; demage on the outcrop to some extent does not impair the intrinsic value of the section; and the geomorphological/landscape value of the section is low. The application of the recently modified geological heritage assessment model to the Seokgaejae section shows very high scores on the scientific/educational, intrinsic, and functional values. Based on the improved geological heritage grade standard, the Seokgaejae section conforms to the national-level protection criteria. It is strongly recommended to manage the Seokgaejae section as a principal geosite by including it in the Gangwon Paleozoic National Geopark. This case study on the Seokgaejae section also suggests that the process of application and endorsement of a national geopark need further improvement. As well as the improvement of the system or policy related to geological heritages, further efforts of the experts in various fields of geoscience are required in order for other geological heritages not to be neglected from now on.

Analysis of Epistemic Thinking in Middle School Students in an Argument-Based Inquiry(ABI) Science Class (논의기반 탐구(ABI) 과학수업에서 나타나는 중학생들의 인식론적 사고 분석)

  • Park, Jiyeon;Nam, Jeonghee
    • Journal of The Korean Association For Science Education
    • /
    • v.39 no.3
    • /
    • pp.337-348
    • /
    • 2019
  • The purpose of this study is to examine epistemic thinking in middle school students in an argument-based inquiry science class. Participants of the study were 93 9th grade students from four classes of a middle school in a metropolitan city. Observations were made over one semester during which argument-based inquiry lessons on five subjects were conducted. Data was collected from argument-based inquiry activity worksheets and student questionnaires. After analysis of epistemic thinking in the written reflections, students were found to have the highest frequency of epistemic metacognitive skills, followed by epistemic cognition, epistemic metacognitive experience, and epistemic metacognitive knowledge. While investigating the effects of an argument-based inquiry science class on student epistemic thinking and after analysis of the reflections written for the first ABI activity and the fifth ABI activity, we found that all of the sub-elements of epistemic thinking have increased. The rate of growth for epistemic cognition is greatest, followed by epistemic metacognitive knowledge and epistemic metacognitive skills. Assessed for epistemic thinking, the level of epistemic thinking improved over the course of the argument-based inquiry science class. The results of the survey show that students actively participating and being recognized for their active participation in the argument-based inquiry science class are helpful in understanding scientific knowledge. Therefore, an argument-based inquiry science class is a teaching and learning program that allows students to understand and experience the epistemic nature of scientific knowledge and its construction through collaboration and agreement.