DOI QR코드

DOI QR Code

Xanthan Gum Reduces Aluminum Toxicity in Camelina Roots

잔탄검 혼합에 따른 카멜리나 뿌리의 알루미늄 독성 경감 효과

  • Shin, Jung-Ho (Department of Integrated Food, Bioscience and Biotechnology) ;
  • Kim, Hyun-Sung (Department of Bioenergy Science and Technology, Chonnam National University) ;
  • Kim, Sehee (Department of Integrated Food, Bioscience and Biotechnology) ;
  • Kim, Eunsuk (Department of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology School) ;
  • Jang, Ha-young (Department of Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology School) ;
  • Ahn, Sung-Ju (Department of Bioenergy Science and Technology, Chonnam National University)
  • 신정호 (전남대학교 융합식품바이오공학과) ;
  • 김현성 (전남대학교 바이오에너지공학과) ;
  • 김세희 (전남대학교 융합식품바이오공학과) ;
  • 김은석 (광주과학기술원 지구 환경공학부) ;
  • 장하영 (광주과학기술원 지구 환경공학부) ;
  • 안성주 (전남대학교 바이오에너지공학과)
  • Received : 2021.08.13
  • Accepted : 2021.09.28
  • Published : 2021.09.30

Abstract

Biopolymers have been known as eco-friendly soil strengthening materials and studied to apply levees. However, the effect of biopolymer on vegetation is not fully understood. In this study, we analyzed the root growth of Camelina sativa L. (Camelina) when the xanthan gum was amended to soil in Aluminum (Al) stress conditions. Amendment of 0.05% xanthan gum increased root growth of Camelina under Al stress conditions. Under the Al stress condition, expression of aluminum activate malate transporter 1 (ALMT1) gene of Camelina root was induced but showed a lower level of expression in xanthan gum amended soil than non-amended soil. Additionally, the binding capacity of xanthan gum with Al ions in the solution was confirmed. Using morin staining and ICP-OES analysis, the Al content of the roots in the xanthan gum soil was lower than in the non-xanthan gum soil. These results suggest that xanthan gum amended soils may reduce the detrimental effects of Al on the roots and positively affect the growth of plants. Therefore, xanthan gum is not only an eco-friendly construction material but also can protect the roots in the disadvantageous environment of the plant.

친환경 제방 건설 소재로 연구되고 있는 바이오폴리머는 토양의 강도 증진 효과가 알려져 있으나, 아직 식생에 미치는 영향에 대한 연구는 부족하다. 본 연구에서는 토양의 aluminum (Al) 스트레스 조건에서 잔탄검 (xanthan gum) 혼합에 따른 Camelina sativa L. (Camelina)의 뿌리 생장을 분석하였다. Al 스트레스 조건과 더불어 xanthan gum 0.05% 혼합구에서 생육한 Camelina가 비혼합구보다 뿌리 생장이 증가하였다. 같은 조건에서 aluminum activated malate transporter 1 (ALMT1) 유전자 발현이 xanthan gum 혼합구 및 비혼합구에서 모두 유도되었지만, xanthan gum 혼합구가 비혼합구보다 낮은 수준의 발현을 보여주었다. 추가적으로 용액에서 xanthan gum과 Al 이온의 결합을 확인하였으며, morin 염색과 ICP-OES 분석을 통해 Camelina 뿌리의 Al 함량을 측정한 결과 xanthan gum 혼합구에서 비혼합구 보다 뿌리의 Al 함량이 낮았다. 이러한 결과들은 xanthan gum과 Al 결합으로 인해 뿌리의 피해를 감소시키고 궁극적으로 식물의 생존 및 생육에 긍정적 효과를 미치는 것으로 보인다.

Keywords

Acknowledgement

본 연구는 국토교통 물관리연구사업 (사업번호 : 18AWMP-B114119-03)과 전남대학교 학술연구비(과제번호: 2020-1936)의 지원에 의해 이루어진 결과로 이에 감사드립니다.

References

  1. Ahn, S., Rengel, Z. and Matsumoto, H. 2004. Aluminum-induced plasma membrane surface potential and H+-ATPase activity in near-isogenic wheat lines differing in tolerance to aluminum. New Phytologist 162(1): 71-79. https://doi.org/10.1111/j.1469-8137.2004.01009.x
  2. Ahn, S.J., Sivaguru, M., Osawa, H., Chung, G.C. and Matsumoto, H. 2001. Aluminum inhibits the H+-ATPase activity by permanently altering the plasma membrane surface potentials in squash roots. Plant physiology 126(4): 1381-1390. https://doi.org/10.1104/pp.126.4.1381
  3. Bergmann, D., Furth, G. and Mayer, C. 2008. Binding of bivalent cations by xanthan in aqueous solution. International journal of biological macromolecules 43(3): 245-251. https://doi.org/10.1016/j.ijbiomac.2008.06.001
  4. Chang, I., Im, J., Prasidhi, A.K. and Cho, G.-C. 2015. Effects of Xanthan gum biopolymer on soil strengthening. Construction and Building Materials 74: 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026
  5. Delhaize, E., Ryan, P.R. and Randall, P.J. 1993. Aluminum tolerance in wheat (Triticum aestivum L.) (II. Aluminum-stimulated excretion of malic acid from root apices). Plant physiology 103(3): 695-702. https://doi.org/10.1104/pp.103.3.695
  6. Godon, C., Mercier, C., Wang, X., David, P., Richaud, P., Nussaume, L., Liu, D. and Desnos, T. 2019. Under phosphate starvation conditions, Fe and Al trigger accumulation of the transcription factor STOP1 in the nucleus of Arabidopsis root cells. The Plant Journal 99(5): 937-949. https://doi.org/10.1111/tpj.14374
  7. Guo, J., Zhang, Y., Gao, H., Li, S., Wang, Z.Y. and Huang, C.F. 2020. Mutation of HPR1 encoding a component of the THO/TREX complex reduces STOP1 accumulation and aluminum resistance in Arabidopsis thaliana. New Phytologist.
  8. Hamidifar, H., Keshavarzi, A. and Truong, P. 2018. Enhancement of river bank shear strength parameters using Vetiver grass root system. Arabian Journal of Geosciences 11(20): 611. https://doi.org/10.1007/s12517-018-3999-z
  9. Kochian, L.V. 1995. Cellular mechanisms of aluminum toxicity and resistance in plants. Annual review of plant biology 46(1): 237-260. https://doi.org/10.1146/annurev.pp.46.060195.001321
  10. Larsen, P.B., Geisler, M.J., Jones, C.A., Williams, K.M. and Cancel, J.D. 2005. ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. The Plant Journal 41(3): 353-363. https://doi.org/10.1111/j.1365-313X.2004.02306.x
  11. Larson, S., Martin, W.A., Wade, R., Hudson, R. and Nestler, C. 2016. Technology Transfer of Biopolymer Soil Amendment for Rapid Revegetation and Erosion Control at Fort AP Hill, Virginia. ENGINEER RESEARCH AND DEVELOPMENT CENTER VICKSBURG MS ENVIRONMENTAL LAB.
  12. Lei, G.J., Yokosho, K., Yamaji, N., Fujii-Kashino, M. and Ma, J. F. 2017. Functional characterization of two half-size ABC transporter genes in aluminium-accumulating buckwheat. New Phytologist 215(3): 1080-1089. https://doi.org/10.1111/nph.14648
  13. Lim, H.-G., Kim, H.-S., Lee, H.-S., Sin, J.-H., Kim, E.-S., Woo, H.-S. and Ahn, S.-J. 2018. Amended Soil with Biopolymer Positively Affects the Growth of Camelina sativa L. Under Drought Stress. Ecology and Resilient Infrastructure 5(3): 163-173. (In Korean) https://doi.org/10.17820/eri.2018.5.3.163
  14. Ma, J.F., Ryan, P.R. and Delhaize, E. 2001. Aluminium tolerance in plants and the complexing role of organic acids. Trends in plant science 6(6): 273-278. https://doi.org/10.1016/S1360-1385(01)01961-6
  15. MacRae, E. 2007. Extraction of plant RNA. In Protocols for nucleic acid analysis by nonradioactive probes (pp. 15-24): Springer.
  16. Park, W., Kim, H.-S., Park, T.-W., Lee, Y.-H. and Ahn, S.-J. 2017. Functional characterization -of plasma membrane-localized organic acid transporter (CsALMT1) involved in aluminum tolerance in Camelina sativa L. Plant Biotechnology Reports 11(3): 181-192. https://doi.org/10.1007/s11816-017-0441-z
  17. Quarles Jr, C.D., Manard, B.T., Wylie, E.M. and Xu, N. 2018. Trace elemental analysis of bulk uranium materials using an inline automated sample preparation technique for ICP-OES. Talanta 190: 460-465. https://doi.org/10.1016/j.talanta.2018.08.031
  18. Rengel, Z. 2004. Aluminium cycling in the soil-plant-animal-human continuum. Biometals 17(6): 669-689. https://doi.org/10.1007/s10534-004-1201-4
  19. Rout, G., Samantaray, S. and Das, P. 2001. Aluminium toxicity in plants: a review. Agronomie 21(1): 3-21. https://doi.org/10.1051/agro:2001105
  20. Sasaki, T., Yamamoto, Y., Ezaki, B., Katsuhara, M., Ahn, S.J., Ryan, P.R., Delhaize, E. and Matsumoto, H. 2004. A wheat gene encoding an aluminum-activated malate transporter. The Plant Journal 37(5): 645-653. https://doi.org/10.1111/j.1365-313X.2003.01991.x
  21. Shen, H., He, L.F., Sasaki, T., Yamamoto, Y., Zheng, S. J., Ligaba, A.,Yan, X. L., Ahn S.J., Yamaguchi, M. and Sasakawa, H. 2005. Citrate secretion coupled with the modulation of soybean root tip under aluminum stress. Up-regulation of transcription, translation, and threonine-oriented phosphorylation of plasma membrane H+-ATPase. Plant physiology 138(1), 287-296. https://doi.org/10.1104/pp.104.058065
  22. Shin, J.-H., Kim, H.-S., Kim, E. and Ahn, S.-J. 2020. Biopolymer Amended Soil Reduces the Damages of Zn Excess in Camlina sativa L. Ecology and Resilient Infrastructure 7(4): 262-273. (In Korean) https://doi.org/10.17820/ERI.2020.7.4.262
  23. Von Uexkull, H. and Mutert, E. 1995. Global extent, development and economic impact of acid soils. Plant and soil 171(1): 1-15. https://doi.org/10.1007/BF00009558
  24. Yamaguchi, M., Sasaki, T., Sivaguru, M., Yamamoto, Y., Osawa, H., Ahn, S.J. and Matsumoto, H. 2005. Evidence for the plasma membrane localization of Al-activated malate transporter (ALMT1). Plant and Cell Physiology 46(5): 812-816. https://doi.org/10.1093/pcp/pci083
  25. Yamamoto, Y., Kobayashi, Y. and Matsumoto, H. 2001. Lipid Peroxidation Is an Early Symptom Triggered by Aluminum, But Not the Primary Cause of Elongation Inhibition in Pea Roots1. Plant physiology 125(1): 199-208. doi:10.1104/pp.125.1.199
  26. Yu, W., Kan, Q., Zhang, J., Zeng, B. and Chen, Q. 2016. Role of the plasma membrane H+-ATPase in the regulation of organic acid exudation under aluminum toxicity and phosphorus deficiency. Plant signaling & behavior 11(1): e1106660. https://doi.org/10.1080/15592324.2015.1106660
  27. Zhang, F., Yan, X., Han, X., Tang, R., Chu, M., Yang, Y., Yang, Y.-H., Zhao, F., Fu, A. and Luan, S. 2019. A Defective Vacuolar Proton Pump Enhances Aluminum Tolerance by Reducing Vacuole Sequestration of Organic Acids. Plant physiology 181(2): 743-761. https://doi.org/10.1104/pp.19.00626
  28. Zhang, J., Wei, J., Li, D., Kong, X., Rengel, Z., Chen, L., Yang, Y., Cui, X. and Chen, Q. 2017. The role of the plasma membrane H+-ATPase in plant responses to aluminum toxicity. Frontiers in plant science, 8, 1757. https://doi.org/10.3389/fpls.2017.01757
  29. Zhang, Y., Zhang, J., Guo, J., Zhou, F., Singh, S., Xu, X., Xie, Q., Yang, Z. and Huang, C. F. 2019. F-box protein RAE1 regulates the stability of the aluminum-resistance transcription factor STOP1 in Arabidopsis. Proc Natl Acad Sci U S A 116(1): 319-327. doi:10.1073/pnas.1814426116