• 제목/요약/키워드: Construction Formwork

검색결과 206건 처리시간 0.028초

거푸집 자동화 설계를 위한 3차원 기반 소프트웨어 개발에 관한 연구 (A Study on the Development of 3D Software for Automated Formwork Design)

  • 이보경;이태훈;김진성;이동은;최형길
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 추계 학술논문 발표대회
    • /
    • pp.112-113
    • /
    • 2019
  • In this study, development of 3D software for automated formwork design was conducted to achieve optimization and reduction of labor for temporary work. Through the literature review, the current technical level was identified and the required functions of 3D software for automated formwork design were derived. The 3D software should be developed with the aim of automating 3D design, improving construction quality and utilizing the Internet of Things. As a preliminary step to develop 3D software, the prototype demo version was developed to implement 3D design automation function, which confirm the possibility of 3D software development.

  • PDF

유로폼과 알루미늄폼의 효율성 분석 (Efficiency Analysis of Euro-Form and Aluminum-form)

  • 김진원;유승규;김재준
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2010년도 춘계 학술논문 발표대회 1부
    • /
    • pp.41-44
    • /
    • 2010
  • Presently, the apartment house is being constructed by the very various methods. Among them, the formwork having the process rate of 60~70% of the whole construction work is most important. So this study was analyzed comparing euro-form with aluminium-form in the formwork. A case study is using euro-form and aluminum-form in the framework, inquiry into a similar case construction site of below the 20 floor. Then this case analyzed efficiency; construction period, construction cost, workability. Consequently, the aluminum-form is more effective than the euro-form in the construction site of below the 20 floor.

  • PDF

Innovative Technologies and Their Application on the Construction of a 100-Plus-Story Skyscraper

  • Haowen, Ye
    • 국제초고층학회논문집
    • /
    • 제4권3호
    • /
    • pp.161-169
    • /
    • 2015
  • Experience on the construction of several 100-plus-story skyscrapers including Guangzhou West Tower, Guangzhou East Tower, and Shenzhen's KK100 is described considering the increasingly strong development trend of 100-plus-story skyscrapers in China. Difficulties in the construction of 100-plus-story skyscrapers are investigated. Four innovative construction technologies receive detailed descriptions: intelligently and entirely-jacked work platforms, formwork and suspension scaffolding systems ("jacking and formwork systems"), multi-function low-carbon concrete, 5D-BIM ("five-dimensional building information modeling"), and safe and rapid vertical transport, as they have found successful applications in actual projects. Popularized systematically as technical achievements, these technologies will significantly influence the construction of similar projects in the future, and produce more social and economic benefits.

합성수지 거푸집 적용에 따른 콘크리트 수화열 검토 (Examination of Concrete Hydration Heat According to the Application of Synthetic Resin Formwork)

  • 남경용;김성덕;최석;양근혁
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 봄 학술논문 발표대회
    • /
    • pp.153-154
    • /
    • 2020
  • The purpose of this paper is to examine the characteristics of heat and hydration of concrete according to formwork materials. As a result of the experiment, it was found that there were no problems such as concrete heat loss and delay in hydration reaction due to the use of synthetic resin formwork.

  • PDF

Development and Applications of the Intrinsic Model for Formwork Pressure of Self-Consolidating Concrete

  • Kwon, Seung-Hee;Kim, Jae-Hong;Shah, Surendra P.
    • International Journal of Concrete Structures and Materials
    • /
    • 제6권1호
    • /
    • pp.31-40
    • /
    • 2012
  • Self-consolidating concrete (SCC) is a recently developed innovative construction material. SCC fills in a formwork without any vibrating consolidation, which allows us to eventually achieve robust casting. However, high formwork lateral pressure exerted by SCC is a critical issue regarding its application as cast-in-place concrete. In order to control the risk caused by high formwork pressure, a comprehensive prediction model for the pressure was previously proposed, investigated, and validated with various SCC mixtures. The model was originally designed to simulate the intrinsic pressure response of SCC mixtures while excluding other extrinsic influencing factors such as friction and flexibility of the formwork. The model was then extended to consider extrinsic factors such as friction between SCC mixtures and formwork. In addition, other interesting topics for peak formwork pressure and mineral admixture effects were summarized in the paper.

구조해석에 의한 파이프서포트의 내력비교에 관한 연구 (A Study on the Strength Comparison of Steel Pipe Support using the Structural Analysis Program)

  • 백신원;박종근
    • 한국안전학회지
    • /
    • 제23권4호
    • /
    • pp.67-71
    • /
    • 2008
  • Formwork is a temporary structure that supports its weight and that of fresh concrete as well as construction live loads. Slab formwork consists of sheathing, stringer, hanger and shore. In construction site, pipe supports are usually used as shores which are consisted of the slab formwork. In this study, compressive strength of 80 pipe supports was measured by knife edge test and plate test. Buckling load of pipe supports was analyzed by structural analysis program(MlDAS). Theoretical buckling load with/without initial deformation was got by theoretical analysis. According to these results, buckling load which was analyzed by structural analysis program(MlDAS) was larger than compressive strength of knife edge test and plate test. Theoretical buckling load without initial deformation was larger than compressive strength of knife edge test and plate test. But Theoretical buckling load with initial deformation was lower than compressive strength of knife edge test and plate test. Initial deformation equation for test method according to the pipe support length was suggested. Therefore, the present study results will be used to design the slab formwork safely.

재사용 파이프서포트의 내력변화 연구(III) (A Study on the Strength Change of Used Pipe Support(III))

  • 백신원;최순주
    • 한국안전학회지
    • /
    • 제21권3호
    • /
    • pp.101-106
    • /
    • 2006
  • Formwork is a temporary structure that supports its weight and that of freshly placed concrete as well as construction live loads. In constructions site, pipe supports are usually used as shores which are consisted of the slab formwork. The strength of a pipe support is decreasing as it is frequently being used at the construction site. Among the accidents and failures that occur during concrete construction, there are many formwork failures which usually happen at the time concrete is being placed. The objective of this study is to find out the strength change of used pipe support and unused pipe supports according to aging. In this study, 2857 pipe supports were prepared. Among these pipe supports, 2337 pipe supports were lent to the construction companies free of charge. 520 pipe supports were kept on the outside. Compressive strength was measured by knife edge test and plate test at each 3 month. Test results show that the strength of unused pipe supports as well as used pipe supports was decreasing according to age, use frequency and load carrier, and the strength of used pipe supports was lower than the strength of unused pipe supports at the same age. So, the strength of used pipe supports from 191 days to present day was not satisfied the specification of KS F 8001. In this study, the strength of pipe support according to age, use frequency and load carrier was predicted using SPSS 12.0. It was known that the strength of pipe support using for 5 years was reduced to 42.8%. According to these results, it shows that attention has to be paid to formwork design using used pipe supports. Therefore, the present study results will be able to provide a finn base to prevent formwork collapses.

재사용 파이프서포트의 내력변화 연구(II) (A Study on the Strength Change of Used Pipe Support(II))

  • 백신원;노민래
    • 한국안전학회지
    • /
    • 제20권3호
    • /
    • pp.120-125
    • /
    • 2005
  • Formwork is a temporary structure that supports its weight and that of freshly placed concrete as well as construction live loads. Among the accidents and failures that occur during concrete construction, many are formwork failures which usually happen at the time concrete is being placed. In constructions site, pipe supports are usually used as shores which are consisted of the slab formwork. The strength of a pipe support is decreasing as it is frequently being used at the construction site. The objective of this study is to find out the strength change of used pipe support and unused pipe supports according to aging. In this study, 2857 pipe supports were prepared. Among these pipe supports, 2337 pipe supports were lent to the construction companies fire of charge. 520 pipe supports were kept on the outside. Compressive strength was measured by knife edge test and plate test at each 3 month. Test results show that the strength of unused pipe supports as well as used pipe supports was decreasing according to age, use frequency and load carrier, and the strength of used pipe supports was lower than the strength of unused pipe supports at the same age. So, the strength of used pipe supports from 191 days to present day was not satisfied the specification of KS F 8001. According to these results, it shows that attention has to be paid to formwork design using used pipe supports. Therefore, the present study results will be able to provide a firm base to prevent formwork collapses.

BIM-BASED PLANNING OF TEMPORARY FACILITIES FOR CONCRETE CONSTRUCTION

  • Kyungki Kim;Jochen Teizer
    • 국제학술발표논문집
    • /
    • The 5th International Conference on Construction Engineering and Project Management
    • /
    • pp.1-6
    • /
    • 2013
  • Concrete construction requires utilization of many temporary facilities such as formwork, shoring, and scaffolding. Appropriate use of these temporary facilities greatly impacts the quality, cost, schedule, and safety of concrete construction. The current practice in design and planning of temporary facilities is often manual, error-prone, and re-active based on construction site layout, status, and progress in the field. Early design and planning of temporary facilities for concrete construction using Building Information Modeling (BIM) technology offers a potential solution. Although some commercially-available software exists that assists in the generation of temporary facility designs, the construction industry lacks tools that support detailed planning and design of many other temporary facilities. This research presents our early work in automating the design and planning of temporary facilities utilizing BIM. Algorithms were developed to automatically assess geometric conditions of work space to detect required temporary facilities and design them. The proposed methodology was implemented in a test model. By automatically incorporating temporary facilities into BIM, more realistic construction models can be created with less effort and errors. Temporary facilities-loaded models can finally be used for communication, bill of materials, scheduling, etc. and as a benchmark for field installation of temporary formwork, shoring, and scaffolding systems.

  • PDF

비정형 콘크리트 패널 생산을 위한 측면형상 제어시스템 개발 (Development of Side Formwork Control System for Production FCP(Free-form Concrete Panel))

  • 김기혁;정경태;이동훈
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 춘계 학술논문 발표대회
    • /
    • pp.53-54
    • /
    • 2019
  • Currently, the market for free-form building continues to grow, but the technology for construction of free-form building in Korea is still in need of much study. In this study, we focused on this problem and conducted basic study for development a side formwork control system to product various types of FCP. As a result of this study, it is expected that it will be able to secure competitiveness for the free-form building market, which is expected to contribute greatly to the growth of the construction industry.

  • PDF