The ebXML (Electronic Business using eXtensible Markup Language) Specification Schema is to provide nominal set of specification elements necessary to specify a collaboration between business partners based on XML. As a part of ebXML Specification Schema, BPSS (Business Process Specification Schema) has been provided to support the direct specification of the set of elements required to configure a runtime system in order to execute a set of ebXML business transactions. The BPSS is available in two stand-alone representations, a UML version and an XML version. Due to the limitations of UML notations and XML syntax, however, current ebXML BPSS specification is insufficient to specify formal semantic constraints of modeling elements completely. In this study, we propose a classification schema for the BPSS semantic constraints and describe how to represent those semantic constraints formally using OCL (Object Constraint Language). As a way to verify a Business Process Specification (BPS) with the formal semantic constraint modeling, we suggest a rule-based approach to represent the formal constraints and to use the rule-based constraints specification to verify BPSs in a CLIPS prototype implementation.
As a part of ebXML(Electronic Business using eXtensible Markup Language) framework, BPSS(Business Process Specification Schema) has been provided to support the direct specification of the set of elements required to configure a runtime system in order to execute a set of ebXML business transactions. The BPS,' is available in two stand-alone representations, a UML version and an XML version. Due to the limitations of UML notations and XML syntax, however, current ebXML BPSS specification fails to specify formal semantic constraints completely. In this study, we propose a constraint classification scheme for the BPSS specification and describe how to formally represent those semantic constraints using OCL(Object Constraint Language). As a way to validate p Business Process Specification(BPS) with the formal semantic constraints, we suggest a rule-based approach to represent the formal constraints and demonstrate its detailed mechanism for applying the rule-based constraints to the BPS with a prototype implementation.
Castellano, Giovanna;Fanelli, Anna M.;Mencar, Corrado
한국지능시스템학회:학술대회논문집
/
한국퍼지및지능시스템학회 2003년도 ISIS 2003
/
pp.376-379
/
2003
In this paper we describe DCClass, a tool for fuzzy information granulation with transparency constraints. The tool is particularly suited to solve fuzzy classification problems, since it is able to automatically extract information granules with class labels. For transparency pursuits, the resulting information granules are represented in form of fuzzy Cartesian product of one-dimensional fuzzy sets. As a key feature, the proposed tool is capable to self-determining the optimal granularity level of each one-dimensional fuzzy set by exploiting class information. The resulting fun information granules can be directly translated in human-comprehensible fuzzy rules to be used for class inference. The paper reports preliminary experimental results on a medical diagnosis problem that shows the utility of the proposed tool.
건설공사 관리의 목표는 계획된 품질을 적정 비용과 공기로 완성하기 위한 것이며, 이러한 건설공사의 목표를 실현하기 위해서는 효과적인 공정관리가 필요하다. 그러나 현재의 공정관리 방식은 마일스톤에 의한 결과위주의 관리방식으로 작업간의 상호연관성과 변이발생을 충분히 고려하지 못하는 등 여러 한계점이 있다. 이와 같은 공정관리 방식의 한계점을 극복하기 위해 재고 최소화, 낭비 최소화, 관리 능률 향상, 변이 관리 능력 향상 등의 효과를 나타낼 수 있는 린 건설 도입을 제안하고 있다. 따라서 본 연구에서는 린 건설 관리 기법 중 하나인 라스트 플래너 시스템에 관한 연구를 진행하였으며, 특히 라스트 플래너 시스템에서 핵심 단계인 주단위 예상작업계획에서 이루어지는 작업제반요건 분석에 관한 연구를 진행하였다. 그 결과 공정 계획 수립 시 사전에 건설공사의 저해요소를 제어하여 작업의 신뢰도 향상 및 작업계획 달성률을 높일 수 있는 작업제반요건을 식별 및 분류하여 중요도 분석을 실시하였다.
In this paper, an approach for 3-D object segmentation and classification, which is based on eigen-values of polynomial function as their surface features, using neural network is proposed. The range images of 3-D objects are classified into surface primitives which are homogeneous in their intrinsic eigenvalue properties. The misclassified regions due to noise effect are merged into correct regions satisfying homogeneous constraints of Hopfield neural network. The proposed method has advantage of processing both segmentation and classification simultaneously.
The adaptive sparse representation (ASR) can effectively combine the structure information of a sample dictionary and the sparsity of coding coefficients. This algorithm can effectively consider the correlation between training samples and convert between sparse representation-based classifier (SRC) and collaborative representation classification (CRC) under different training samples. Unlike SRC and CRC which use fixed norm constraints, ASR can adaptively adjust the constraints based on the correlation between different training samples, seeking a balance between l1 and l2 norm, greatly strengthening the robustness and adaptability of the classification algorithm. The correlation coefficients (CC) can better identify the pixels with strong correlation. Therefore, this article proposes a hyperspectral image classification method called correlation coefficients and adaptive sparse representation (CCASR), based on ASR and CC. This method is divided into three steps. In the first step, we determine the pixel to be measured and calculate the CC value between the pixel to be tested and various training samples. Then we represent the pixel using ASR and calculate the reconstruction error corresponding to each category. Finally, the target pixels are classified according to the reconstruction error and the CC value. In this article, a new hyperspectral image classification method is proposed by fusing CC and ASR. The method in this paper is verified through two sets of experimental data. In the hyperspectral image (Indian Pines), the overall accuracy of CCASR has reached 0.9596. In the hyperspectral images taken by HIS-300, the classification results show that the classification accuracy of the proposed method achieves 0.9354, which is better than other commonly used methods.
Junior, Estevam R. Hruschka;Galvao, Sebastian D. C. de O.
Journal of Computing Science and Engineering
/
제1권2호
/
pp.162-176
/
2007
Machine Learning (ML) has become very popular within Data Mining (KDD) and Artificial Intelligence (AI) research and their applications. In the ML and KDD contexts, two main approaches can be used for inducing a Bayesian Network (BN) from data, namely, Conditional Independence (CI) and the Heuristic Search (HS). When a BN is induced for classification purposes (Bayesian Classifier - BC), it is possible to impose some specific constraints aiming at increasing the computational efficiency. In this paper a new CI based approach to induce BCs from data is proposed and two algorithms are presented. Such approach is based on the Markov Blanket concept in order to impose some constraints and optimize the traditional PC learning algorithm. Experiments performed with the ALARM, as well as other six UCI and three artificial domains revealed that the proposed approach tends to execute fewer comparison tests than the traditional PC. The experiments also show that the proposed algorithms produce competitive classification rates when compared with both, PC and Naive Bayes.
최근 전자상거래에는 일대일 마케팅이나 협력적 정보여과기법등을 이용한 다양한 추천서비스가 도입되고 있다. 이러한 추천 서비스의 형태는 다양한 제약 조건을 갖고 계산 복잡도가 높은 제품의 경우에는 고객을 만족시킬 만큼 적절한 추천서비스가 이루어지기 어려울 것으로 본다. 본 논문에서는 Clancey의 Classification Problem Solving 방법과 제약조건 기반 Configuration기술을 통합하여, 이러한 문제를 해결할 수 있는 방법을 제시하였다. 이 방법은 Clancey의 이론에 따라 구성 복잡도가 높은 제품의 해집합 도메인을 분할하여 문제의 복잡도를 줄일 수 있도록 하였으며, 여기에서 선택된 도메인을 제약조건 기반 Configuration기술에 적용시킴으로써, 구매자와 제품 컴포넌트 사이에 존재하는 제약조건을 처리할 수 있도록 하였다. 제약조건기반 Configuration기술은 구매자에게 적합한 제품을 구성하기 위해서 제막 조건 판촉 문제(Constraint Satisfaction Problem; CSP)해결 기법을 이용한다. 또한 Clancey이론은 구매자의 만족도를 고려하기 위해서 정보검색 분야의 벡터공간 모델링 방법을 변형하여 적용하였다. 마지막으로 본 모델의 평가를 위해 전체 시스템의 수행시간 및 구매자 만족도를 비교 분석하였다
Beekeeping has been practiced for centuries in Ethiopia. Currently, there are three broad classification of honey production systems in Ethiopia; these are traditional (forest and backyard), transitional(intermediate) and modern(frame beehive) systems. Ethiopian honey production is characterized by the widespread use of traditional technology resulting in relatively low honey yield and poor honey quality. Despite the challenges and constraints, Ethiopia has the largest bee population in Africa with over 10 million bee colonies, of which 5 to 7.5million are hived while the remaining exists in the wild. Consequently, these figures, indeed, has put Ethiopia as the leading honey and beeswax producer in Africa. In fact, Ethiopia has even bigger potential than the current honey production due to the availability of plenty apicultural resources such as natural forests with adequate apiculture flora, water resources and a high number of existing bee colonies. However, lack of well-trained man powers, lack of standardization, problems associated with honey bee pests and diseases, high price and limited availability of modern beekeeping equipment's for beekeepers and absconding and migration of bee colonies are some of the major constraints reported for beekeeping in Ethiopia. In this review, an attempt was made to present all beekeeping practices in Ethiopia. The opportunities and major constraints of the sector were also discussed.
Rao, Karanam U M;Choon, Sun-Woo;Chung, So-Keul;Choi, Sung-O
한국암반공학회:학술대회논문집
/
한국암반공학회 2004년도 춘계학술발표회 논문집
/
pp.219-229
/
2004
In this article a comprehensive review of the Rock Mass Rating and Q-rockmass classification systems is made with reference to their scope with in the constraints of underground mining operations. The modifications suggested by KIGAM for both the RMR and Q for the calculation of a safe unsupported span were tested for Daesung and Pyunghae underground limestone mines. Even though the suggested modifications were site specific, the additional parameters considered in the above classification systems are very significant for a design of stable underground openings, considering any general mining conditions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.