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Abstract—In this paper we describe DCClass, a tool for fuzzy
information granulation with transparency constraints. The tool
is particularly suited to solve fuzzy classification problems, since
it is able to automatically extract information granules with class
labels. For transparency pursuits, the resulting information
granules are represented in form of fuzzy Cartesian product of
one-dimensional fuzzy sets. As a key feature, the proposed tool is
capable to self-determining the optimal granularity level of each
one-dimensional fuzzy set by exploiting class information. The
resulting fuzzy information granules can be directly translated in
human-comprehensible fuzzy rules to be used for class inference.
The paper reports preliminary experimental results on a medical
diagnosis problem that shows the utility of the proposed tool.

Index Terms—DCClass, Fuzzy Information Granules,
Transparency Constraints, Fuzzy Rules, Classification.

I. INTRODUCTION

Granular Computing (GrC) is an emerging paradigm
that deals with representing and processing information in the
form of some aggregates, called information granules [1]. The
representation frame for information granules is fundamental
and is driven by the application domain. Nevertheless, among
different forms of information aggregation, fuzzy sets are one
of the most appealing, due to their closeness to the human
way to abstract concepts from the observed environment [11].

A key task in GrC is the so called information
granulation process, which is responsible in the formation of
information aggregates from a set of available data. A
methodological and algorithmic issue is the formation of
transparent fuzzy information granules, meaning that they
should provide a clear and understandable description of
patterns held in data. Such fundamental property can be
formalized by a set of constraints that must be satisfied during
the information granulation process [5], [7].

In this work, we propose a tool for fuzzy information
granulation with transparency constraints, which is
particularly appropriate to solve classification problems. The
tool is called DCClass (Double Clustering for Classification)
and it is based on an enhanced version of our Crisp Double
Clustering (CDC) algorithm proposed in [3],[4]. DCClass
provides a set of information granules represented in form of
Cartesian product of one-dimensional fuzzy sets. As a key
feature of the proposed tool, the granularity of the derived
one-dimensional fuzzy sets is optimally calculated by

exploiting available class information, thus recovering the
user from an arbitrary choice of the granularity level of each
fuzzy set.

Each of the information granules returned by DCClass
is associated to class labels, so fuzzy classification rules can
be directly defined. Such rules constitute the knowledge base
for a fuzzy inference system, which can be conveniently used
to solve fuzzy classification problems, as well as to validate
the derived information granules in terms of their adherence
to the available data.

To show the effectiveness of the proposed tool, a
medical case study is considered in this work. Preliminary
experimental results show that DCClass is able to extract
human understandable fuzzy information granules, which
define fuzzy classification rules that can be used for diagnosis
prediction, as well as to provide a knowledge base for further
understanding and knowledge refinement.

II. TRANSPARENT Fuzzy CLASSIFICATION

In this Section, we provide a description of the
problem of fuzzy classification properly solved by a set of
fuzzy rules. In addition, we formulate a set of constraints that
we adopt as definition of transparency. For sake of simplicity,
we consider only two-class classification problems, though
the extension to multi-class problems is straightforward.

The classification problem is implicitly defined by a
dataset of N pairs:
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D={(x,¢),i=12..,N} (1)

where each x, =(z,,2,,...,3,) is a vector in R" and ¢, is
the class discriminant that can assume one of two possible
values C = {C,,C, }. Without loss of generality, we assume
that the input vector belongs to a closed hyper-interval,
defined as:

X =[m,M]x x[m,, M,] 2

being [m,, M,]C R,i=12....n.

Given such dataset, the problem is to derive a set of R
fuzzy rules that accurately classify the elements of the
available dataset as well as newly observed examples. The
rules have the following form:
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IF x is A” THEN class is ¢” 3)

where r=12,...,R is the rule index, A” is an
information granule represented as a multi-dimensional fuzzy
szt defined on the entire domain X, and ¢™ € C is the class
discriminant of the rule. When an input vector is given, the
:1ferred class membership values are computed as follows:
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ushere g, (X) is the membership value of pattern x in the

siformation granule A™. When crisp classification in
rzquired, the class with maximum membership value is
selected.

Many different rule extraction techniques exist in
i-terature that can provide accurate rulesets in an efficient way
15ee, e.g. [6],[10]) However, most of these techniques do not
ake into account the transparency requirement of the
discovered knowledge base: as a consequence, the resulting
riles are accurate but lack in human understandability.

Informally speaking, the transparency of the fuzzy
riles concerns the possibility for human users to read and
understand the knowledge base acquired from data. Such
raquirement can be translated in a formal fashion by a set of
censtraints to be satisfied in the knowledge extraction
process. In this work, we adopt the following constraints,
which are commonly embraced in specialized literature (see,
¢.2. [5]) and stand out for their simplicity and general
applicability:

Each information granule must be defined as a Cartesian
product of one-dimensional fuzzy sets:

AD = Alm X AT %o AT (5)

being each one-dimensional fuzzy set A" defined over
the interval [m,, M,]. The membership function of the

multidimensional granule is induced by the membership
functions of the one-dimensional fuzzy sets and a T-
norm operator ® as follows:

Hm (K = [y (z,)®® My (z.) (6)

Z Each one-dimensional fuzzy set must be normal,
unimodal and convex. In other words, for each fuzzy set
there exist only one element (called profotype) with
maximum membership 1.0, while all other elements
have a membership value that decreases as the distance
from the prototype increases;

2 For each input dimension i, the extreme values m, and

M, should be prototypes for some fuzzy sets that are
respectively called leftmost and rightmost fuzzy sets;
4 For each element in the interval [m, M ] there must

exist at least one fuzzy set that yields a membership
value greater that a specified coverage threshold =
(usually = = 0.5);
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5. Two fuzzy sets defined on the same input dimension
must not overlap too much, i.e. their possibility measure
should not exceed a specified threshold. In this work, we
set the possibility threshold to be equal to the coverage
threshold ¢ .

It should be noted that constraint 1 concemns the
multidimensional granules, while all the other constraints
refer to their one-dimensional projections. In particular,
constraint 2 can be guaranteed if a proper choice of
membership functions is made. In this work, we adopt

Gaussian membership functions, characterized by two
parameters, namely the center w and the width o :
(z —w)?
My (Z) = exp|————— D
20

It is easy to show that Gaussian membership functions
satisfy constraint 2, whatever is the choice of the parameters
w and o. In contrast, the remaining constraints can be
satisfied only for proper choices of the algorithm to generate
fuzzy information granules. When transparency constraints
are satisfied, meaningful labels can be assigned to each one-
dimensional fuzzy sets, like LOW, MEDIUM, HIGH, etc.,
depending on the relative position of their prototypes.
Moreover, multidimensional granules can be represented as
conjunction of labels, like ‘x; is LOW AND x, is HIGH’, thus
conveying immediately interpretable knowledge that can be
used in fuzzy inference.

In addition to the abovementioned constraints, it is
desirable to follow some guidelines that suggest a low number
of rules, as well as a low number of one-dimensional fuzzy
sets per dimension. As a consequence, the rule extraction
algorithm should take into account also these guidelines in
order to provide a more legible knowledge base.

III. DCCLASS

In this Section, we describe the proposed DCClass
tool. The tool is based on our CDC algorithm, with a
substantial modification to accommodate class information
within the information granulation process.

DCClass is defined as a composition of three
sequential steps that are depicted with an illustrative example
in Figure 1 and are described as follows. First, available data
is compressed by means of a vector quantization algorithm,
with the aim of derive a set of multidimensional prototypes
that capture multidimensional relationships in data (fig. 1a).
Among different vector quantization strategies, those that
exploit class information are preferred because of their
superior accuracy. In particular, in this work we adopt the
LVQI1 (Learning Vector Quantization, version 1) algorithm as
described in [8]. It should be noted that each
multidimensional prototype is associated to a class label,
which will be used in the subsequent steps of granules
formation.

Since a direct fuzzification of the derived prototypes
may result in nonsensical fuzzy information granules, a
second step is performed. Specifically, the multidimensional
prototypes are projected onto each input axis, being each
projection associated to a class label according to the original
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Figure 1: Hlustrative example of the three stages of DCClass. (a) Data
points belonging to two classes (crosses and stars) are compressed by
LVQ (squares and circles). (b) Prototypes of the codebook are projected
onto each dimension and then clustered. (c) Midpoints between clusters
are used to define fuzzy sets with transparency constraints

prototype (fig. 1b). For each dimension, the projections are
clustered together according to the following criterion: the
adjacent projections of the same class are grouped together,
while the projections of different classes belong to different
clusters. The rationale behind such step consists in merging
similar projections in a single cluster, as long as they belong
to the same class. In this way, fuzzy sets will be shared by
different information granules, thus improving the legibility
of the resulting knowledge base.

As a final step, midpoints between edges of adjacent
one-dimensional clusters (i.e. the mean value between the
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maximum element of a cluster and the minimum element of
its next adjacent cluster) are calculated. Such midpoints are
used to define the intersection points between the membership
functions of adjacent fuzzy sets (fig. 1c). The fuzzy sets so
derived satisfy all the transparency constraints defined
previously. Finally, multidimensional granules are formed by
a combination of one-dimensional fuzzy sets, one for each
dimension. Combinatorial explosion of the number of
granules is avoided by selecting only the fuzzy granules that
well represent the multidimensional prototypes discovered in
the first step.

The combination of the three steps provides a
definition of fuzzy information granules that capture
multidimensional relationships on data and are represented in
form of human understandable fuzzy sets. Moreover, as a key
feature, DCClass automatically provides the granularity level
of fuzzy sets for each dimension, by exploiting information on
class distribution. Only the number of multidimensional
prototypes to be discovered in the first step has to be
specified.

Finally, the resuiting fuzzy information granules are
directly translated into classification rules as follows. If an
information granule is defined as a Cartesian product of fuzzy
sets Aﬁ,A,.z,...,A,.“ and is associated to class C;, then a

classification rule is formed as follows:
IF 7, is 4 and --- and 7, is 4

THEN i ®
class is C;

Each fuzzy granule defines a rule. As a consequence, the
number of resulting rules is upper bounded by the number of
multidimensional prototypes discovered in the first step of
DCClass computation.

IV. EXPERIMENTAL RESULTS

To illustrate the effectiveness of the proposed tool, the
medical case study of Wisconsin Breast Cancer (WBC)
diagnosis is considered. In particular, the WBC dataset has
been retrieved from the UCI Machine Learning Repository
[2], where data and detailed information can be found. The
dataset consists of 683 examples' described by nine
continuous attributes labeled with one out of two possible
diagnoses: malignant and benignant cancer.

The dataset is split according to the ten-fold stratified
cross validation, so each simulation run is repeated ten times
and average results are drawn. In addition, we fix the
maximum number of rules (i.e. the number of
multidimensional prototypes to be discovered in the first step
of DCClass) to six, and we adopt the product as the T-norm
for the Cartesian product in (6).

The application of DCClass provides ten rule sets with
average classification error on the test sets of 3.975%, while
the mean number of rules is 3.6. When compared with similar
approaches, like NEFCLASS [9], the achieved results confirm
that the proposed tool is a valid technique to extract accurate
knowledge from data.

' The original dataset consists of 699 cxamples from which we discard 16
cases with missing valucs.
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Figure 2: Fuzzy sets defined by DCClass for three input variables

To assess the transparency of the resulting information
granules, we choose a rule set of five rules that provides a
classification error of 1.471% on the test set. The one-
dimensional fuzzy sets derived from the application of
[CClass satisfy the transparency constraints defined in
Section 1I, as illustrated in Figure 2 for three input
dimensions. For such fuzzy sets, the association of
meaningful linguistic label is straightforward. In Figure 3, we
report two of the five rules to illustrate how transparent rules

ate formed on the basis of information granules discovered by
D(CClass.

If Clump-Thickness is LOW AND Uniformity-of-Cell~
Size is LOW AND Uniformity-of-Cell-Shape is LOW
AND Marginal-Adhesion is LOW  AND Single~
Epithelial-Cell-Size 1is LOW AND Bare-Nuclei is
LOW AND Bland-Chromatin is LOW AND Normal-

Nucleoli is VERY-LOW AND Mitoses is MED-LOW Then
MALIGNANT.

If Clump-Thickness is MED AND Uniformity-of-Cell~-
Size is HIGH AND Uniformity-of-Cell-Shape is HIGH
AND Marginal-Adhesion is HIGH AND Single~
Epithelial-Cell-Size is HIGH AND Bare-Nuclei is
HIGH AND Bland-Chromatin 1is HIGH AND Normal-

Nucleoli is HIGH AND Mitoses 1is HIGH Then
BENIGNANT.

Figure 3: Two of the five rules discovered by DCClass

V. CONCLUSIONS

We have presented DCClass, a tool to extract human
interpretable fuzzy information granules from data, which are
particularly suited to solve classification problems. As
supported by experimental results, the tool is able to discover
both accurate and transparent granules that can be
conveniently represented in form of fuzzy rules. The proposed
tool can be further improved by optimally reducing the
number of one-dimensional fuzzy sets per input and the
number of input variables for each rule, so as to provide
simpler classification rules without significant loss of

accuracy. Algorithmic solutions with this aim are under
investigation.
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