• Title/Summary/Keyword: Constraint frame

Search Result 140, Processing Time 0.023 seconds

Welded plate and T-stub tests and implications on structural behavior of moment frame connections

  • Dong, P.;Kilinski, T.
    • Steel and Composite Structures
    • /
    • v.2 no.1
    • /
    • pp.35-50
    • /
    • 2002
  • A series of tests on simple-welded plate specimens (SWPS) and T-stub tension specimens simulating some of the joint details in moment frame connections were conducted in this investigation. The effects of weld strength mismatch and weld metal toughness on structural behavior of these specimens were considered under both static and dynamic loading conditions. Finite element analyses were performed by taking into account typical weld residual stress distributions and weld metal strength mismatch conditions to facilitate the interpretation of the test results. The major findings are as follows: (a) Sufficient specimen size requirements are essential in simulating both load transfer and constraint conditions that are relevant to moment frame connections, (b) Weld residual stresses can significantly elevate stress triaxiality in addition to structural constraint effects, both of which can significantly reduce the plastic deformation capacity in moment frame connections, (c) Based on the test results, dynamic loading within a loading rate of 0.02 in/in/sec, as used in this study, premature brittle fractures were not seen, although a significant elevation of the yield strength can be clearly observed. However, brittle fracture features can be clearly identified in T-stub specimens in which severe constraint effects (stress triaxiality) are considered as the primary cause, (d) Based on both the test and FEA results, T-stub specimens provide a reasonable representation of the joint conditions in moment frame connections in simulating both complex load transfer mode and constraint conditions.

Accelerating RFID Tag Identification Processes with Frame Size Constraint Relaxation

  • Park, Young-Jae;Kim, Young-Beom
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.3
    • /
    • pp.242-247
    • /
    • 2012
  • In the determination of suitable frame sizes associated with dynamic framed slotted Aloha used in radio frequency identification tag identification processes, the widely imposed constraint $L=2^Q$ often yields inappropriate values deviating far from the optimal values, while a straightforward use of the estimated optimal frame sizes causes frequent restarts of read procedures, both resulting in long identification delays. Taking a trade-off, in this paper, we propose a new method for determining effective frame sizes where the effective frame size changes in a multiple of a predetermined step size, namely ${\Delta}$. Through computer simulations, we show that the proposed scheme works fairly well in terms of identification delay.

Sensitivity Analysis and Optimization of Nonlinear Vehicle Frame Structures (비선형 차체프레임구조물의 민감도해석 및 최적화)

  • Won, Chong-Jin;Lee, Jong-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2833-2842
    • /
    • 1996
  • This paper is to practice optimal rigidity design by the strain energy density estimation method for static buckling and sizing design sensitivity analysis for dynamic buckling of a nonlinear vehicle frame structure from those results. Using these sizing design sensitivity resutls, an optimization of a nonlinear vehicle frame structure with dynamic buckling constraint is carrried out with the graient projection method.

Sensitivita Analysis and Optimal desing of plane Vehicle Frame Structures (평면 차체프레임구조물의 민감도해석 및 최적설계)

  • 이종선
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.4
    • /
    • pp.74-81
    • /
    • 1996
  • This paper is to estimate sizing design sensitivity of linear and nonlinear vehicle frame structure using structural ananlysis result from ANSYS. Using design sensitivity results, optimal design of plane vehicle frame structure with buckling constraint is carried out the gradient projection method. Optimal design results are compares gradient projection method resrult with SUMT result.

  • PDF

Performance Evaluation of the M-algorithm for Decoding Convolutional Codes (M-알고리듬을 이용한 컨벌루셔널 부호의 복호 성능 평가)

  • 천진영;최규호;성원진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.3A
    • /
    • pp.188-195
    • /
    • 2002
  • The M-algorithm for decoding convolutional codes can significantly reduce the complexity of the Viterbi algorithm by tracking a fixed number of survivor paths in each level of the decoding trellis. It is an easily-implementable algorithm suited for real-time processing of high-speed data. The algorithm, however, generates a sequence of catastrophic errors when the correct path is not included in the set of survivor paths. In this paper, the performance of the M-algorithm obtained from using various decoding complexity levels, frame lengths, and code constraint lengths is presented. The performance gain is quantified when the algorithm is used in conjunction with codes of increased constraint length. In particular, it is demonstrated the gain from the increased code free distance overcompensates the loss from the correct path being excluded from the survivors, when the frame length is short to moderate. Using 64 survivor paths, the signal-to-noise ratio gain obtained by increasing the constraint length from K=7 to K=9, 11, 15 is respectively 0.6, 0.75, and 08dB, when the frame of length L=100 has the frame error rate of 0.01%.

Dynamic VBR traffic characterization for video service in ATM network (ATM 망에서 비디오 서비스를 위한 동적 VBR 트래픽 특성화)

  • 황재철;조미령;이상원;이상훈
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.4
    • /
    • pp.455-470
    • /
    • 2001
  • This paper is focused on the traffic characterization for the efficient transmission of the VBR video source in the ATM network. For the traffic characterization, low traffic monitoring technique is applied and the dynamic VBR characterization method is suggested to satisfy the delay requirement. The dynamic VBR method uses the token bucket algorithm buffering though Cumulative Constraint Function. According to the Cumulative Constraint Function, the packet initially started transferring at the peak rate and the token bucket provided proper amount of buffer for traffic after a certain period of monitoring. It also reduced the network resource bandwidth through renewal of the cumulative frame and changed the rate from the previous frame information. It requires only small amount of monitoring and causes little overhead. In addition, it lowered the complexity of Deterministic Constraint Function to 0(n) and mapped the token rate and token depth to the token bucket. This study shows less network resource consumed than the previous method, comparing and analyzing the result of simulations.

  • PDF

Hybrid impedance control for free and contact motion

  • Oh, Yonghwan;Chung, W. K.;Youm, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.448-451
    • /
    • 1995
  • A general task execution with hybrid impedance control method is addressed. The target impedance is expressed in the constraint frame. For the computational simplicity and the robustness improvement, disturbance observer scheme is used. To make stable contact with the environment, the large value of desired inertia gain for the force-controlled subspace is suggested. Numerical examples are given to show the performance of the proposed controller.

  • PDF

Optimal design using genetic algorithm with nonlinear inelastic analysis

  • Kim, Seung-Eock;Ma, Sang-Soo
    • Steel and Composite Structures
    • /
    • v.7 no.6
    • /
    • pp.421-440
    • /
    • 2007
  • An optimal design method in cooperated with nonlinear inelastic analysis is presented. The proposed nonlinear inelastic method overcomes the difficulties due to incompatibility between the elastic global analysis and the limit state member design in the conventional LRFD method. The genetic algorithm used is a procedure based on Darwinian notions of survival of the fittest, where selection, crossover, and mutation operators are used to look for high performance ones among sections in the database. They are satisfied with the constraint functions and give the lightest weight to the structure. The objective function taken is the total weight of the steel structure and the constraint functions are load-carrying capacity, serviceability, and ductility requirement. Case studies of a planar portal frame, a space two-story frame, and a three-dimensional steel arch bridge are presented.

Optimal design using genetic algorithm with nonlinear elastic analysis

  • Kim, Seung-Eock;Song, Weon-Keun;Ma, Sang-Soo
    • Structural Engineering and Mechanics
    • /
    • v.17 no.5
    • /
    • pp.707-725
    • /
    • 2004
  • An optimal design method with nonlinear elastic analysis is presented. The proposed nonlinear elastic method overcomes the drawback of the conventional LRFD method that accounts for nonlinear effect by using the moment amplification factors of $B_1$ and $B_2$. The genetic algorithm used is a procedure based on Darwinian notions of survival of the fittest, where selection, crossover, and mutation operators are employed to look for high performance ones among sections in the database. They are satisfied with the constraint functions and give the lightest weight to the structure. The objective function taken is the total weight of the steel structure and the constraint functions are strength, serviceability, and ductility requirement. Case studies of a planar portal frame, a space two-story frame, and a three-dimensional steel arch bridge are presented.

An Energy Optimization Technique for Latency and Quality Constrained Video Applications (지연 시간 및 화질 제약이 있는 비디오 응용을 위한 에너지 최적화 기법)

  • 임채석;하순회
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.10
    • /
    • pp.543-552
    • /
    • 2004
  • This paper proposes an energy optimization technique for latency and quality constrained video applications. It consists of two key techniques: frame-skipping technique and buffering technique. While buffering increases the slack time utilization at the OS level. frame skipping Increases the slack time itself at the application level, and both enhance the effectiveness of the dynamic voltage scaling technique. We use an H.263 encoder application as a test vehicle to which the proposed technique is applied. Experiments demonstrate that the proposed technique achieves noticeable energy reduction satisfying the given latency and video quality constraints.