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I. INTRODUCTION 
 

Due to the ability to identify objects wirelessly without 
line-of-sight, radio frequency identification (RFID) systems 
are becoming noticeably prevalent. RFID systems are 
thought to be particularly attractive for applications such as 
retail, inventory management, and supply-chain 
management [1, 2]. 

RFID systems consist of a reader and multiple tags. 
While the reader is powerful in terms of memory and 
computational resources, there are many types of tags 
with varying computational capabilities. Among the 
various tag types, passive ones are becoming more and 
more popular for large scale deployments due to their 
low cost [2]. 

Collision due to simultaneous tag responses is one of the 
key issues in RFID systems. It results in wastage of 
bandwidth and energy, and increases identification delays. 
To minimize collisions, RFID readers must use an anti-
collision protocol. The design of anti-collision protocols 

becomes more challenging considering that the tags must be 
simple, cheap, and small enough. 

The anti-collision algorithm of RFID can be either 
deterministic or statistical. In this paper, we analyze anti-
collision protocols based on framed slotted Aloha (FSA). 
Such protocols have the ability to adjust their frame size in 
accordance with varying tag populations using a tag 
estimation function. 

Consider a reader with N  tags in its interrogation 
zone. Initially, the reader starts the collision resolution 
process with an arbitrary frame size. Tags then choose a 
slot randomly to transmit their identification. The reader 
monitors the status of each slot and counts the number of 
slots filled with zero, one, or multiple tag responses. This 
observation is then translated to a tag estimate, N~  via a 
tag estimation function. Once an estimate is computed, 
the reader adjusts its frame size accordingly in such a 
way that the reading process can be terminated as soon as 
possible. 
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data collected until the tht  read cycle. With the DFSA 
protocol in operation, the frame size L  is updated every 
read cycle. We denote by tL , where K1,2,=t , the frame 

size used for the tht  read cycle. The value of 1L  is set to 
an appropriate value as the reading process starts (e.g., 16 
[3]). 

 
 

 
Fig. 3. A sample trajectory of tag estimates when N = 48. 

 
 
The optimal design problem for the tag reading process 

can be formulated as follows. 
Given an assurance level α , for K1,2,=t , devise   

the tag estimate ),,,(= 21 tt fN OOO K , optimal frame 

size )(=1 tt NgL + , and termination time αT  such that the 

identification delay t
T

tid L∑ ατ
1=

=  is minimized under the 

constraint that 
 

.]c     a[ αα ≥ycleTafteridentifiedaretagsllP th     (1) 
 
Suppose there are N  tags in the interrogation zone 

(actually the number of tags N  is unknown to the reader) 
and we continue the read cycle with the same frame size L . 
The question now is when to stop the reading process such 
that the identification delay is minimized and with 
confidence level α  all tags are read. 
 
B. Vogt's Estimate [3] 

 
With N  tags in the interrogation zone and frame 

size L , the average number of slots with occupancy r
( Nr ,0,1,= K ), denoted by NL

ra ,  is given by  
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Fig. 4. A Comparison of Vogt’s and the proposed methods for 
computing optimal frame sizes. 
 
 

Based on the observations until the tht  cycle,
},,,{ 21 tOOO K , Vogt's estimate vdE  is computed as, 
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where NLa ,
2≥   denotes the average number of slots with 

occupancy greater than or equal to 2 . Thus it always 
holds that tttt

NtLNtLNtL LCSHaaa ==,
2

,
1

,
0 ++++ ≥ . It is 

noteworthy that Vogt's estimate utilizes only the last 
observation tO . Upon obtaining )(= tvdt EN O , the 

optimal frame size for the stt 1)( +  cycle 1+tL  is 

determined appropriately according to a table proposed 
in [3]. 
 
C. The Estimate of Young et al. 

 
A problem with Vogt's scheme is that the tag estimate 

does not converge to the actual value and continuously 
fluctuates as the reading process proceeds, due to the fact 
that Vogt's estimate utilizes only the most recent observation 

tO  instead of 1O , 2O , ..., tO . 

In DFSA, the tag estimate tN  is computed after the tht  
cycle for K1,2,=t  and the frame size 1+tL  for the 

stt 1)( +  read cycle is adjusted appropriately. As the tag 
reading process goes on, the frame size tL  may or may not 
change. We can decompose the sequence of observations 
into multiple groups. Each group consists of consecutive 
observations with the same frame size. Each group of 
consecutive read cycles with same frame size is termed a 
round. In this vein, a read process can be organized as 
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Fig. 3 shows that the estimate l,m

yyE  yields more stable 
results compared to vdE . 
 
 

 
Fig. 5. The optimal frame sizes vs. number of tags. 
 
 
III. PROPOSED SCHEME 
 

In this section, we first summarize the simple 
parameter estimation method proposed in [6] and then 
present the proposed scheme for determining effective 
frame sizes. 

 
A. Simple Parameter Estimation Approach [6] 

 
Denoting by tE  the event that all tags are identified until 

the end of the tht  read cycle, under an independence 
assumption among tags we have 
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Upon applying the constraint (1), i.e., α≥][ tEP , the 
termination time αT  can be computed as  
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where the operator ⎤⎡x  stands for the smallest integer 
greater than or equal to x . The exact value of αT  can be 
computed following the Markov chain approach described 
in [3]. However, the computation is extremely burdensome 
especially for large values of N . Though the 
independence assumption is not generally true, Fig. 4 
shows that the values computed in both ways coincide 
exactly, except only one case. Throughout we use the 
formula (2) for the estimation of αT . 

The optimal frame size *
NL  for a given N , minimizing 

the identification delay idτ , is given by 
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 By putting NL λ=  as was done before, idτ  can be 
expressed as a function of λ , i.e.,  
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Fig. 5 shows the tendency for the optimal frame size to 

grow linearly in N  with the slope in the interval [1.3,1.6] . 
Thus, we can roughly compute the optimal frame size 
according to 

[1.3,1.6].w= *** ∈× λλ ithNLN  
 
B. Determination of Effective Frame Sizes 

 
Fig. 6 shows the tag identification procedure used in the 

proposed scheme. In the main procedure, we see that a new 
reading round starts whenever the value of frame size L
needs to be updated. As briefly discussed in Section I, if 
frame sizes are updated frequently, the identification delay 
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increases while sticking to the constraint QL 2=  yields 
inaccurate frame sizes much different from the optimal 
frame sizes. In this respect, we propose to set the actual 
frame sizes used in the reading process, namely the effective 
frame sizes linearly proportional to a fixed step size Δ , i.e., 

)1,2,=(=e KQQL ff ×ΔΔ         (5) 

with 
  ⎡ ⎤.= * ΔNLQ  
 
The value of Δ  can be set to any positive integer, e.g.,

K4,8,16,32, . In order to prevent frequent updates of the 
effective frame sizes, we impose the following update rule. 
Denoting by ew

ffLn
e , the new effective frame size,  

  Update ew
ffLn

e  only if Δ+ff
ew
ff LL e

n
e > . 

 
On the other hand, Vogt's procedure for reading tags [3] 

often generates overestimated values of N  and L , which 
lead to unnecessarily large values of αT , thereby resulting 
in greater identification delays. In order to circumvent this 
problem, as shown in Fig. 6, considering the cases of the 
initial value of L  being too small compared to N , the 
initial estimation for the number of tags is performed twice. 
In the first estimation, the value of L  is set to 16 while in 
the second estimation, the value of L  obtained in the first 
estimation is used for reliable tag estimates. 

 
 

identifyNew() { 
/* Initial. Phase */ 
L=16, N_est = 0; stepL = 1; 
 
c = performReadCycle(L); 
N_est = newEstimate(L,c);//1st est. 
L = adaptFrameSize(L,N_est); 
 
c = performReadCycle(L);//Try new L 
N_est = newEstimate(L,c); 
L = adaptFrameSize(L,N_est); 
 
/* Main procedure starts */ 
do { 
  stepL++; 
  c = performReadCycle(L); 
  N_est = newEstimate(L,c); 
  L0 = adaptFrameSize(L,N_est); 
  if (L0 > L){ 
    stepL = 0; 
    L = L0; 
  } 
} while(stepL < maxStep(L,N_est)); 

} 

Fig. 6. The tag read procedure used in the proposed scheme. 

IV. SIMULATION RESULTS AND DISCUSSION 
 

We performed computer simulations to evaluate the 
proposed scheme. The desired assurance level α  was set 
to 0.99, meaning the requirement that on the average the 
number of cases failing to identify all tags should not 
exceed 1% of all identification processes. In the simulations, 
we used the tag estimate l,m

yyE  and the read procedure 
described in Fig. 6. Via the estimation of optimal frame 
sizes according to (3), effective frame sizes were determined 
by (5). In (5), the value of Δ  was set to 16, which appears 
to be most appropriate in our simulation. The termination 
time αT  was computed from the effective frame size by 
the formula (2). 

 

 

Fig. 7. Performance of two schemes in terms of identification delay. 
 
 

 
Fig. 8. The identification accuracies of the two schemes. 

 
 
The tag set size N  for the simulation ranges from 10 to 

100 and for each tag set size we carried out 1,000 runs of 
the reading procedure. Figs. 7 and 8 show that the proposed 
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scheme works fairly well for the entire range of N  with 
the desired accuracy level (i.e., 0.99) being satisfied all the 
time. For example, the identification delay for 80=N  in 
the proposed scheme is shorter than that in Vogt's scheme by 
about 1,200 slots. We can also observe that the proposed 
scheme is more useful for large values of N . On the other 
hand, Fig. 8 shows that the actual accuracy of Vogt's scheme 
turns out to be unnecessarily far above the desired accuracy 
level. 

 
 

V. CONCLUSIONS 
 

In setting suitable frame sizes associated with DFSA 
used in RFID tag identification processes, the constraint 

QL 2=  yields inappropriate values deviating far from the 
optimal values while a straightforward use of the estimated 
optimal frame sizes causes frequent restarts of read 
procedures, both resulting in long identification delays. 
Taking a trade-off, in this paper, we proposed a new 
method for determining effective frame sizes where the 
effective frame sizes change in a multiple of a 
predetermined step size, namely Δ . Through computer 
simulations we show that the proposed scheme works 
fairly well in terms of identification delay. 
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