• 제목/요약/키워드: Constraint Force Design Method

검색결과 34건 처리시간 0.022초

구속조건 힘 설계기법을 이용한 강체와 스트링의 위상 최적설계 (Topology Design of Rigid-String Mechanism Using Constraint Force Design Method)

  • 허재청;윤길호
    • 대한기계학회논문집A
    • /
    • 제36권7호
    • /
    • pp.745-750
    • /
    • 2012
  • 이 논문에서는 강체 메커니즘의 위상 최적설계를 위해 제안된 구속조건 힘 설계 기법(constraint force design method)을 확장하여 로프-링크(string-link)를 고려한 위상 최적설계기법을 제안한다. 기존의 메커니즘 설계이론을 이용하여 메커니즘을 구성하는 강체 링크의 길이와 조인트의 위치를 최적설계하는 것은 가능하다. 하지만 강체 메커니즘의 최적 위상을 설계하는 것은 어렵다는 것으로 알려져 있다. 강체 메커니즘의 최적 위상을 설계할 수 있는 기법인 구속조건 힘 설계 기법이 본 연구자들에 의해 제안되었다. 구속조건 힘 설계 기법은 이진수 설계 변수를 이용하여 강체 링크의 위상 최적설계를 가능하게 한다. 이번 연구에서는 강체 링크뿐만 아니라 로프-링크로 구성된 메커니즘을 위상 최적설계하기 위한 발전된 해석기법과 설계 기법을 제안한다.

최적 모듈 선택 아키텍쳐 합성을 위한 저전력 Force-Directed 스케쥴링에 관한 연구 (A Study on Low Power Force-Directed scheduling for Optimal module selection Architecture Synthesis)

  • 최지영;김희석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 하계종합학술대회 논문집(2)
    • /
    • pp.459-462
    • /
    • 2004
  • In this paper, we present a reducing power consumption of a scheduling for module selection under the time constraint. A a reducing power consumption of a scheduling for module selection under the time constraint execute scheduling and allocation for considering the switching activity. The focus scheduling of this phase adopt Force-Directed Scheduling for low power to existed Force-Directed Scheduling. and it constructs the module selection RT library by in account consideration the mutual correlation of parameters in which the power and the area and delay. when it is, in this paper we formulate the module selection method as a multi-objective optimization and propose a branch and bound approach to explore the large design space of module selection. Therefore, the optimal module selection method proposed to consider power, area, delay parameter at the same time. The comparison experiment analyzed a point of difference between the existed FDS algorithm and a new FDS_RPC algorithm.

  • PDF

유도탄 행거 항력 저감을 위한 페어링 형상 최적화 (Fairing Design Optimization of Missile Hanger for Drag Reduction)

  • 정소라
    • 한국군사과학기술학회지
    • /
    • 제22권4호
    • /
    • pp.527-535
    • /
    • 2019
  • Hanger in a rail-launched missile protrudes in general and causes to increase significant drag force. One method to avoid the significant increase of drag force is to apply fairings on the hanger. In this paper, sloping shaped fairing parameters of height, width, and length are optimized to minimize the drag force under subsonic speed region by examining three configurations of fairings : front-fairing only, rear-faring only, and the both front and rear fairing. We use Latin Hypercube Sampling method to determine the experimental points, and computational fluid dynamics with incompressible RANS solver was applied to acquire the data at sampling points. Then, we construct a meta model by kriging method. We find the best choice among three configurations examined : both front and rear fairing reduce the drag force by 63 % without the constraint of fairing mass, and front fairing reduced the drag force by 52 % with the constraint of hanger mass.

저수지 취수탑의 최적설계에 관한 연구(II) -강도설계법을 중심으로- (Optimum Design of the Intake Tower of Rerervoir -With Application of Strength Design Method-)

  • 김종옥;고재군
    • 한국농공학회지
    • /
    • 제30권3호
    • /
    • pp.82-94
    • /
    • 1988
  • A growing attention has been paid to the optimum design of structures in recent years. Most studies on the optimum design of reinforced concrete structures has been mainly focussed to the design of structural members such as beams, slabs and columns, and there exist few studies that deal with the optimum design of large-scale concrete shell structures. The purpose of the present investigation is, therefore, to set up an efficient optimum design method for the large-scale reinforced concrete cylindrical shell structures like intake tower of reservoir. The major design variables are the dimensions and steel areas of each member of structures. The construction cost which is compo8ed of the concrete, steel, and form work costs, respectively, is taken as the objective function. The constraint equations for the design of intake-tower are derived on the basis of strength design method. The results obtained are summarized as follows 1. The efficient optimlzation algorithrns which can execute the automatic optimum design of reinforced concrete intake tower based on the strength design method were developed. 2. Since the objective function and design variables were converged to their optimum values within the first or second iteration, the optimization algorithms developed in this study seem to be efficient and stable. 3. When using the strength design method, the construction cost could be saved about 9% compared with working stress design method. Therefore, the reliability of algorithm was proved. 4. The difference in construction cost between the optimum designs with substructures and with entire structure was found to be small and thus the optimum design with substructures may conveniently be used in practical design. 5. The major active constraints of each structural member were found to be the 'bending moment constraint for slab, the minimum longitudinal steel ratio constraint for tower body and the shearing force, bending moment and maximum eccentricity constraints for footing, respectively. 6. The computer program developed in the present study can be effectively used even by an uneiperienced designer for the optimum design of reinforced concrete intake-tower on the basis of strength design method.

  • PDF

표면열전달과 항력을 고려한 극초음속 비행체 선두부 최적형상설계 (A Design Optimization Study of Blunt Nose Hypersonic Flight Vehicle Using Surface Heat-transfer and Drag Minimization)

  • 임설;서정일;송동주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2004년도 추계 학술대회논문집
    • /
    • pp.197-201
    • /
    • 2004
  • A design optimization of Sphere-Cone blunt nose hypersonic flight vehicle has been studied by using upwind Navier-Stokes method and numerical optimization method. Heat transfer coefficient and drag coefficient are selected as objective function or design constraint. Control points of Bezier curve are considered as design variable.

  • PDF

Optimum cost design of RC columns using artificial bee colony algorithm

  • Ozturk, Hasan Tahsin;Durmus, Ahmet
    • Structural Engineering and Mechanics
    • /
    • 제45권5호
    • /
    • pp.643-654
    • /
    • 2013
  • Optimum cost design of columns subjected to axial force and uniaxial bending moment is presented in this paper. In the formulation of the optimum design problem, the height and width of the column, diameter and number of reinforcement bars are treated as design variables. The design constraints are implemented according to ACI 318-08 and studies in the literature. The objective function is taken as the cost of unit length of the column consisting the cost of concrete, steel, and shuttering. The solution of the design problem is obtained using the artificial bee colony algorithm which is one of the recent additions to metaheuristic techniques. The Artificial Bee Colony Algorithm is imitated the foraging behaviors of bee swarms. In application of this algorithm to the constraint problem, Deb's constraint handling method is used. Obtained results showed that the optimum value of numerical example is nearly same with the existing values in the literature.

고속프레스의 다이나믹 시스템 및 방진시스템 설계에 관한 연구 (A Study on the Design of Dynamic System and Vibration Isolation System in a High-speed Press)

  • 서진성;정철재;현기용;류민
    • 한국소음진동공학회논문집
    • /
    • 제25권12호
    • /
    • pp.856-865
    • /
    • 2015
  • In a high-speed press, numerous moving links are interconnected and each link executes a constrained motion at high speed. As a consequence, high-level dynamic unbalance force and unbalance moment are transmitted to the main frame of the press, which results in unwanted vibration and significantly degrades manufacturing accuracy. Dynamic unbalance force and unbalance moment inevitably transmits high-level vibrational force to the foundation on which the press is installed. Minimizing the vibrational force transmitted to the foundation is critical for the protection of both the operators and the surrounding structures. The whole task should be carried out in two steps. The first step is to reduce dynamic unbalance based upon kinematic and dynamic analyses. The second step is to design and build an optimal vibration isolation system minimizing the vibrational force transmitted to the foundation. Firstly, the dynamic design method is presented to reduce dynamic unbalance force and moment. For this a 3D CAD software was utilized and a computer program was written to compute dynamic unbalance force and moment. Secondly, the design method for vibration isolation system is presented. The method for designing coil springs and viscous dampers are explained in detail.

Force Distribution of a Six-Legged Walking Robot with High Constant Speed

  • Jung, Kwang-Suk;Baek, Yoon-Su
    • Journal of Mechanical Science and Technology
    • /
    • 제14권2호
    • /
    • pp.131-140
    • /
    • 2000
  • For a walking robot with high constant body speed, the dynamic effects of the legs on the transfer phase are dominant compared with other factors. This paper presents a new force distribution algorithm to maximize walkable terrain without slipping considering the dynamic effects of the legs on the transfer phase. Maximizing the walkable terrain means having the capability of walking on more slippery ground under the same constraint, namely constant body speed. A simple force distribution algorithm applied to the proposed walking model with a pantograph leg shows an improvement in the capability of preventing foot-slippage compared with one using a pseudo-inverse method.

  • PDF

텐세그리티 구조물 설계를 위한 다목적 최적화 기법에 관한 연구 (Multi-objective Optimization for Force Design of Tensegrity Structures)

  • Ohsaki, Makoto;Zhang, Jingyao;Kim, Jae-Yeol
    • 한국공간구조학회논문집
    • /
    • 제8권1호
    • /
    • pp.49-56
    • /
    • 2008
  • 텐세그리티 구조물의 설계를 위한 다목적 최적화 기법이 제시되었다. 구조물의 기하가 먼저 주어지며, 설계변수는 부재력이다. 목적함수는 최대 강성매트릭스에 대한 최저 고유치와 찾고자 하는 목표값으로부터 가장 근접하게 일치하는 부재력이다. 복수의 목적함수 문제가 구속조건을 도입하여 일련의 단일 목적함수 문제로 전환되었다. 본 논문의 타당성을 알아보기 위해 텐세그리티 그리드에 대한 최적해를 구해 보았다.

  • PDF

선박 국부구조의 공진응답 저감을 위한 동흡진기 최적 설계 방법 (Optimal Design Method of Dynamic Vibration Absorber to Reduce Resonant Vibration Response of Ship Local Structure)

  • 권혁;조대승
    • 대한조선학회논문집
    • /
    • 제59권3호
    • /
    • pp.134-140
    • /
    • 2022
  • Ship local structure sometimes experiences severe vibration due to the resonance with an excitation force generated by the propulsion system. In that case, the installation of dynamic vibration absorber such as Tuned Mass Damper (TMD) on the structure can be considered as an effective alternative countermeasure to reduce the troublesome vibration if structural modification or change of excitation frequencies is difficult. Meanwhile, the conventional optimal design method of TMD premises the target structure exposed on an excitation force without the constraint of its magnitude and frequency range. However, the frequencies of major ship excitation forces due to propulsion system are normally bounded and its magnitude is varied according to its operation speed. Hence, the optimal design of TMD to reduce the resonant vibration of ship local structure should be differently approached compared with the conventional ones. For the purpose, this paper proposes an optimal design method of TMD considering maximum frequency and magnitude variation of a target harmonic excitation component. It is done by both lowering the resonant response at the 1st natural frequency and locating the 2nd natural frequency over maximum excitation frequency for the idealized 2 degree of freedom system consisted of the structure and the TMD. For the validation of the proposed method, a numerical design case of TMD for a ship local structure exposed on resonant vibration due to a propeller excitation force is introduced and its performance is compared with the conventionally designed one.