Force Distribution of a Six-Legged Walking Robot with High Constant Speed

  • Jung, Kwang-Suk (Department of Mechanical Engineering, Yonsei University) ;
  • Baek, Yoon-Su (Department of Mechanical Design and Production Engineering, Yonsei University)
  • Published : 2000.02.01

Abstract

For a walking robot with high constant body speed, the dynamic effects of the legs on the transfer phase are dominant compared with other factors. This paper presents a new force distribution algorithm to maximize walkable terrain without slipping considering the dynamic effects of the legs on the transfer phase. Maximizing the walkable terrain means having the capability of walking on more slippery ground under the same constraint, namely constant body speed. A simple force distribution algorithm applied to the proposed walking model with a pantograph leg shows an improvement in the capability of preventing foot-slippage compared with one using a pseudo-inverse method.

Keywords

References

  1. Choi, B. S. and Song, S. M., 1988, 'Automated Obstacle-Crossing Gaits for Walking Machine,' IEEE TRANS. SYST. MAN CYBERN., Vol. 18, 952-964 https://doi.org/10.1109/21.23093
  2. Huang, M. Z. and Waldron, K. J., 1990, 'Relationship between Payload and Speed in Legged Locomotion systems,' IEEE TRANS. ROBOT. AUTOM., Vol. 6, 570-577 https://doi.org/10.1109/70.62046
  3. Kaneko, M., Abe, M. and Tanie, K., 1985, 'A Hexapod Walking Machine with Decoupled Freedoms,' IEEE J. ROBOTICS and AUTOM., Vol. RA-1, 183-190
  4. Kim, J. N., Hong, H. J. and Yoon, Y. S., 1990, 'Feasibility Test for Dynamic Gait of Quadruped Walking Robot,' Transaction of Korea Society of Mechanical Engineering, Vol. 14, 1455-1463
  5. Klein, C. A. and Briggs, R. L., 1980, 'Use of Active Compliance in The Control of Legged Vehicles,' IEEE TRANS. SYST., MAN AND CYBERN., Vol. SMC-10, 393-400
  6. Klein, C. A., Olson, K. W. and Pugh, D. R., 1983, 'Use of Force and Attitude Sensors for Locomotion of a Legged Vehicle over Irregular Terrain,' Int. J. of Robotics Research, Vol. 2, 3-17 https://doi.org/10.1177/027836498300200201
  7. Klein, C. A. and Chung, T. S., 1987, 'Force Interaction and Allocation for The Legs of A Walking Vehicle,' IEEE J. ROBOT. AUTOM., Vol. RA-3, 546-55
  8. Klein, C. A. and Kittivatcharapong, S., 1990, 'Optimal Force Distribution for The Legs of A Walking Machine with Friction Cone Constraints,' IEEE TRANS. ROBOT. AUTOM., Vol. 6, 73-85 https://doi.org/10.1109/70.88119
  9. Orin, D. E. and Oh, S. Y., 1981, 'Control of Force Distribution in Robotic Mechanisms containing Closed Kinematic Chains,' TRANS. ASME. J. DYN. SYST. MEAS. AND CONTROL, Vol. 103, l34-141
  10. Shih, L., Frank, A. A. and Ravani, B., 1987, 'Dynamic Simulation of Legged Machine using A Compliant Joint Model,' INT. J. ROBOT. RES., Vol. 6, 33-46 https://doi.org/10.1177/027836498700600404
  11. Song, S. M. and Waldron, K. J., 1989, 'Machine That Walk,' The Mit Press
  12. Sreenivasan, S. V., Waldron, K. J. and Mukherjee, S., 1996, 'Globally Optimal Force Allocation in Active Mechanisms with Four Frictional Contacts,' ASME. J. of Mechanical Design, Vol. 118, 353-359
  13. Vanderplaats, G. N., 1985, 'ADS-A Fortran Program for Automated Design Synthesis-Version 1.10,' NASA CR-177985