• Title/Summary/Keyword: Constraint Effect

Search Result 444, Processing Time 0.033 seconds

Evaluation for Fracture Toughness with Considering the Thermal Energy (열에너지를 고려한 파괴인성치 고찰)

  • 김정표;임창현;석창성
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.2
    • /
    • pp.1-6
    • /
    • 2001
  • In the case of a crack propagation a portion of the work of inelastic deformation near the crack tip is dissipated as heat. In order to understand the thermal effect on fracture toughness, tensile tests were carried out using thermocouples to monitor the variation of temperature. The experimental results show that the temperature of specimen was increased $5.4^{\circ}C$ at static load condition. And the thermal effect is investigated connected with the steady-state stress in the vicinity of a crack propagation in the elastic-plastic C-T specimen theoretically. And fracture toughness, the energy to make crack surfaces, presented correctively. The fracture toughness with considering heat at the blunting of the crack tip is lower about 16.9% than that of ignoring heat. So, it is resonable to apply the fracture toughness with considering thermal energy and it would be good explanation for constraint effect depending on the configuration in the presence of excessive plasticity.

  • PDF

Evaluation of Fracture Toughness and Constraint Effect of Cruciform Specimen under Biaxial Loading (이축하중을 받는 십자형 시편의 파괴인성 및 구속효과 평가)

  • Kim, Jong Min;Kim, Min Chul;Lee, Bong Sang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.62-69
    • /
    • 2016
  • Current guidance considers that uniaxially loaded specimen with a deep crack is used for the determination of the ductile-to-brittle transition temperature. However, reactor pressure vessel is under biaxial loading in real and the existence of deep crack is not probable through periodic in-service-inspection. The elastic stress intensity factor and the elastic-plastic J-integral which were used for crack-tip stress field and fracture mechanics assessment parameters. The difference of the loading condition and crack geometry can significantly influence on these parameters. Thus, a constraint effect caused by differences between standard specimens and a real structure can over/underestimate the fracture toughness, and it affects the results of the structural integrity assessment, consequentially. The present paper investigates the constraint effects by evaluating the master curve $T_0$ reference temperature of PCVN (Pre-cracked Charpy V-Notch) and small scale cruciform specimens which was designed to simulate biaxial loading condition with shallow crack through the fracture toughness tests and 3-dimensional elastic-plastic finite element analyses. Based on the finite element analysis results, the fracture toughness values of a small scale cruciform specimen were estimated, and the geometry-dependent factors of the cruciform specimen considered in the present study were determined. Finally, the transferability of the test results of these specimens was discussed.

Evaluation of the Crack Tip Stress Distribution Considering Constraint Effects in the Reactor Pressure Vessel (구속효과를 고려한 원자로 압력용기 균열선단에서의 응력분포 예측)

  • Kim, Jin-Su;Choe, Jae-Bung;Kim, Yeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.4
    • /
    • pp.756-763
    • /
    • 2001
  • In the process of integrity evaluation for nuclear power plant components, a series of fracture mechanics evaluation on surface cracks in reactor pressure vessel(RPV) must be conducted. These fracture mechanics evaluation are based on stress intensity factor, K. However, under pressurized thermal shock(PTS) conditions, the combination of thermal and mechanical stress by steep temperature gradient and internal pressure causes considerably high tensile stress at the inside of RPV wall. Besides, the internal pressure during the normal operation produces high tensile stress at the RPV wall. As a result, cracks on inner surface of RPVs may experience elastic-plastic behavior which can be explained with J-integral. In such a case, however, J-integral may possibly lose its validity due to constraint effect. In this paper, in order to verify the suitability of J-integral, tow dimensional finite element analyses were applied for various surface cracks. A total of 18 crack geometries were analyzed, and $\Omega$ stresses were obtained by comparing resulting HRR stress distribution with corresponding actual stress distributions. In conclusion, HRR stress fields were found to overestimate the actual crack-tip stress field due to constraint effect.

A Study on the Fracture Behavior of a Crack in 9% Ni Steel Considering Constraint Effect (구속효과를 고려한 9% Ni강 균열의 파괴거동 해석에 관한 연구)

  • Kim, Young Kyun;Yoon, Ihn soo;Kim, Jae Hoon
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.14-21
    • /
    • 2021
  • Inner shell material of LNG storage tanks that store ultra-low temperature LNG at -162℃ requires structural integrity assessment of a crack-like defect. From the viewpoint of conventional fracture mechanics, the assessment has mainly performed by single parameter using stress intensity factor K, J-integral and CTOD. However, the stresses in a material of crack tip are not unique caused by constraint loss due to size and geometry of the structure. Various attempts have been made to complement a single parameter fracture mechanics, typically with Q-stress. In this paper, we have performed a two-parameter approach by deriving the Q-stress coupling with J-integral suitable for the evaluation of the crack tip stress field in the non-linear elastic region. A quantitative evaluation of the constraint effect has performed by using the J-Q approach. It was evaluated that the SENB type specimen had a crack ratio of 0.1 to 0.7 and the wide type specimen had a crack ratio of 0.2 to 0.6.

Investigation into Crack-Tip Constraint of Curved Wide-Plate using Q-Stress (Q-응력을 이용한 휜 광폭평판 균열부 구속상태 변화 평가)

  • Lee, Hwee-Sueng;Huh, Nam-Su;Kim, Ki-Seok;Shim, Sang-Hoon;Cho, Woo-Yeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1441-1446
    • /
    • 2014
  • In the present paper, the effects of the thickness and width of a curved wide-plate, the crack length, and the strain hardening exponent on the crack-tip constraint of the curved wide-plate were investigated. To accomplish this, detailed three-dimensional elastic-plastic finite element (FE) analyses were performed considering various geometric and material variables. The material was characterized by the Ramberg-Osgood relationship, and the Q-stress was employed as a crack-tip constraint parameter. Based on the present FE results, the variations in the Q-stress of the curved wide-plate with the geometric variables and material properties were evaluated. This revealed that the effect of out-of-plane constraint conditions on the crack-tip constraint was closely related to the in-plane constraint conditions, and out-of-plane constraint conditions affected the crack-tip constraint more than in-plane constraint conditions.

Substructuring and Decoupling of Discrete Systems from Continuous System

  • Eun, Hee-Chang;Koo, Jae-Oh
    • Architectural research
    • /
    • v.14 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • This study proposes analytical methods to establish the eigenfunction of continuous system due to substructuring and decoupling of discrete subsystems. The dynamic characteristics of updated continuous system are evaluated by the constraint effect of consistent deformation at the interfaces between two systems. Beginning with the dynamic equation for constrained discrete system, this work estimates the modal eigenmode function for the continuous system due to the addition or deletion of discrete systems. Numerical applications illustrate the validity and applicability of the proposed method.

Research on the Throughput Impact of the Strategic Stabilizing Capacity Constraint Resources by Prolonging Planning Period

  • Wu, Horng-Huei;Chen, Ching-Piao;Tsai, Chih-Hung;Huang, Kuo-Wei
    • International Journal of Quality Innovation
    • /
    • v.10 no.2
    • /
    • pp.29-42
    • /
    • 2009
  • The issue of capacity constraint resources (CCR) or bottlenecks wandering in product mix decision by applying Theory of Constraints (TOC) management philosophy has been mentioned and demonstrated in several papers. In this study, the effect for prolonging the planning period (PPP) so as to stabilize the CCR is investigated. The results show that the effect for PPP alternative will be positive or negative which is depending on the environment condition. However, a majority cases which have positive effect for PPP alternative can be recognized prior knowing the marketing demand, which is significant in the real application.

The Effects of the Microstructural Change of Dual Phase Steel on Fatigue Fracture Propagation (복합조직강의 미시조직변화가 피로파괴전파에 미치는 영향)

  • Oh, Sae-Wook;Kim, Ung-Jip
    • Journal of Ocean Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.198-198
    • /
    • 1991
  • Not only difference of fatigue crack growth and propagation behavior resulted from the grain size, the hardness ratio and volume fraction in M.E.F. dual phase steel composed of martensite in hard phase and ferrite in soft phase, but also the effects of the plastic constraint were investigated by fracture mechanics and microstructural method. The main results obtained are as follows: 1) The fatigue endurance of M.E.F. steel increases with decreasing the grain size, increasing the ratio of hardness and volume fraction. 2) The initiation of slip and crack occures faster as the stress level goes higher. These phenomena result from the plastic constraint effect of the second phase. 3) The crack propagation rate in the constant stress level is faster as the grain size gets larger, the ratio of hardness lower and volume fraction smaller.

Grant-Free Random Access in Multicell Massive MIMO Systems with Mixed-Type Devices: Backoff Mechanism Optimizations under Delay Constraints

  • Yingying, Fang;Qi, Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.185-201
    • /
    • 2023
  • Grant-free random access (GFRA) can reduce the access delay and signaling cost, and satisfy the short transmission packet and strict delay constraints requirement in internet of things (IoT). IoT is a major trend in the future, which is characterized by the variety of applications and devices. However, most existing studies on GFRA only consider a single type of device and omit the effect of access delay. In this paper, we study GFRA in multicell massive multipleinput multiple-output (MIMO) systems where different types of devices with various configurations and requirements co-exist. By introducing the backoff mechanism, each device is randomly activated according to the backoff parameter, and active devices randomly select an orthogonal pilot sequence from a predefined pilot pool. An analytical approximation of the average spectral efficiency for each type of device is derived. Based on it, we obtain the optimal backoff parameter for each type of devices under their delay constraints. It is found that the optimal backoff parameters are closely related to the device number and delay constraint. In general, devices that have larger quantity should have more backoff time before they are allowed to access. However, as the delay constraint become stricter, the required backoff time reduces gradually, and the device with larger quantity may have less backoff time than that with smaller quantity when its delay constraint is extremely strict. When the pilot length is short, the effect of delay constraints mentioned above works more obviously.