• Title/Summary/Keyword: Constrained Mechanical Systems

검색결과 68건 처리시간 0.027초

Energy-Efficient Cooperative Beamforming based CMISO Transmission with Optimal Nodes Deployment in Wireless Sensor Networks

  • Gan, Xiong;Lu, Hong;Yang, Guangyou
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권8호
    • /
    • pp.3823-3840
    • /
    • 2017
  • This paper analyzes the nodes deployment optimization problem in energy constrained wireless sensor networks, which multi-hop cooperative beamforming (CB) based cooperative-multi-input-single-output (CMISO) transmission is adopted to reduce the energy consumption. Firstly, we establish the energy consumption models for multi-hop SISO, multi-hop DSTBC based CMISO, multi-hop CB based CMISO transmissions under random nodes deployment. Then, we minimize the energy consumption by searching the optimal nodes deployment for the three transmissions. Furthermore, numerical results present the optimal nodes deployment parameters for the three transmissions. Energy consumption of the three transmissions are compared under optimal nodes deployment, which shows that CB based CMISO transmission consumes less energy than SISO and DSTBC based CMISO transmissions. Meanwhile, under optimal nodes deployment, the superiorities of CB based CMISO transmission over SISO and DSTBC based CMISO transmissions can be more obvious when path-loss-factor becomes low.

Stable Intelligent Control of Chaotic Systems via Wavelet Neural Network

  • Choi, Jong-Tae;Choi, Yoon-Ho;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.316-321
    • /
    • 2003
  • This paper presents a design method of the wavelet neural network based controller using direct adaptive control method to deal with a stable intelligent control of chaotic systems. The various uncertainties, such as mechanical parametric variation, external disturbance, and unstructured uncertainty influence the control performance. However, the conventional control methods such as optimal control, adaptive control and robust control may not be feasible when an explicit, faithful mathematical model cannot be constructed. Therefore, an intelligent control system that is an on-line trained WNN controller based on direct adaptive control method with adaptive learning rates is proposed to control chaotic nonlinear systems whose mathematical models are not available. The adaptive learning rates are derived in the sense of discrete-type Lyapunov stability theorem, so that the convergence of the tracking error can be guaranteed in the closed-loop system. In the whole design process, the strict constrained conditions and prior knowledge of the controlled plant are not necessary due to the powerful learning ability of the proposed intelligent control system. The gradient-descent method is used for training a wavelet neural network controller of chaotic systems. Finally, the effectiveness and feasibility of the proposed control method is demonstrated with application to the chaotic systems.

  • PDF

효율적인 실시간 차량 시뮬레이션을 위한 자코비안 갱신이 불필요한 뉴턴 적분방법 (A Jacobian Update-Free Newton's Method for Efficient Real-Time Vehicle Simulation)

  • 강종수;임준현;배대성
    • 한국생산제조학회지
    • /
    • 제23권4호
    • /
    • pp.337-344
    • /
    • 2014
  • While implicit integration methods such as Newton's method have excellent stability for the analysis of stiff and constrained mechanical systems, they have the drawback that the evaluation and LU-factorization of the system Jacobian matrix required at every time step are time-consuming. This paper proposes a Jacobian update-free Newton's method in order to overcome these defects. Because the motions of all bodies in a vehicle model are limited with respect to the chassis body, the equations are formulated with respect to the moving chassis-body reference frame instead of the fixed inertial reference frame. This makes the system Jacobian remain nearly constant, and thus allows the Newton's method to be free from the Jacobian update. Consequently, the proposed method significantly decreases the computational cost of the vehicle dynamic simulation. This paper provides detailed generalized formulation procedures for the equations of motion, constraint equations, and generalized forces of the proposed method.

구속된 다물체 시스템의 선형화에 관한 연구 (A Linearization Method for Constrained Mechanical Systems)

  • 배대성;최진환;김선철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.893-898
    • /
    • 2004
  • This research proposes an implementation method of linearized equations of motion for multibody systems with closed loops. The null space of the constraint Jacobian is first pre multiplied to the equations of motion to eliminate the Lagrange multiplier and the equations of motion are reduced down to a minimum set of ordinary differential equations. The resulting differential equations are functions of all relative coordinates, velocities, and accelerations. Since the coordinates, velocities, and accelerations are tightly coupled by the position, velocity, and acceleration level constraints, direct substitution of the relationships among these variables yields very complicated equations to be implemented. As a consequence, the reduced equations of motion are perturbed with respect to the variations of all coordinates, velocities, and accelerations, which are coupled by the constraints. The position, velocity and acceleration level constraints are also perturbed to obtain the relationships between the variations of all relative coordinates, velocities, and accelerations and variations of the independent ones. The perturbed constraint equations are then simultaneously solved for variations of all coordinates, velocities, and accelerations only in terms of the variations of the independent coordinates, velocities, and accelerations. Finally, the relationships between the variations of all coordinates, velocities, accelerations and these of the independent ones are substituted into the variational equations of motion to obtain the linearized equations of motion only in terms of the independent coordinate, velocity, and acceleration variations.

  • PDF

동적(動的) 구조(構造) 재설계(再說計)를 위한 비선형(非線形) 섭동법(攝動法) (Nonlinea Perturbation Method for Dynamic Structural Redesign)

  • 조규남
    • 대한조선학회지
    • /
    • 제26권1호
    • /
    • pp.39-45
    • /
    • 1989
  • 선체구조물이나 해양구조물의 동적응답중 원치 않는 고유진동수와 고유진동형태를 가지게 되는 경우가 있으며, 이러한 구조물은 동적 구조 재설계가 필수적이다. 본 소고에서는 비감쇄 구조물의 고유진동수와 진동형태를 기진력에 의한 특정한 진동수와 공진하지 않도록 또는 구조물의 중요한 부분이 특정 진동형태의 최대치에 오지 않도록 구조물의 질량과 강성을 최적하게 변화시키는 방법에 대해 논의하고 있다, 이 방법은 기존의 방법에서 사용되는 모든 고유진동형태의 수식포함과 달리 구속된 고유진동형태만을 미지수로 수식중에 사용하여 불필요한 계산과정을 줄이고 있다. 동적 구조 재설계중 최적화 문제에 중점을 두었으며 목적함수로는 구조물의 최소의 변화와 또는 최소의 중량을 취하였고, 예제를 통하여 본 방법의 응용과 효율성이 입증되었다. 예제에서는 간단한 구조물을 다루었으나 본 방법은 상용 유한요소코드의 연계이용으로 각종 선체구조물과 해양구조물의 진동문제해결에 응용될 수 있음은 자명한 일이다.

  • PDF

이산형 2자유도 제어기를 이용한 이송계의 통합설계 (II) -통합설계의 정식화와 해석- (Integrated Design of Feed Drive Systems Using Discrete 2-D.O.F. Controllers (II) -Formulation and Synthesis of Integrated Design-)

  • 김민석;정성종
    • 대한기계학회논문집A
    • /
    • 제28권7호
    • /
    • pp.1038-1046
    • /
    • 2004
  • In order to acquire high-speed and high-precision performances in servomechanisms, an integrated design method have been proposed. Based on strict mathematical modeling and analysis of system performance according to design and operating parameters, a nonlinear constrained optimization problem including the relevant subsystem parameters of the servomechanism is formulated. Optimum design results of mechanical and electrical parameters are obtained according to the design parameters specified by designers through the integrated design processes. Motors are optimally selected from the servo motor database. Both the geometric errors referring to Abbe offset and the contour errors are minimized while required constraints such as stability conditions and saturated conditions are satisfied. This design methodology both offers the improved possibility to evaluate and optimize the dynamic motion performance of the servomechanism and improves the quality of the design process to achieve the required performance for high-speed/precision servomechanisms.

구속된 다물체시스템의 선형화에 관한 연구 (A Linearization Method for Constrained Mechanical System)

  • 배대성;양성호;서준석
    • 대한기계학회논문집A
    • /
    • 제27권8호
    • /
    • pp.1303-1308
    • /
    • 2003
  • This research proposes an implementation method of linearized equations of motion for multibody systems with closed loops. The null space of the constraint Jacobian is first pre-multiplied to the equations of motion to eliminate the Lagrange multiplier and the equations of motion are reduced down to a minimum set of ordinary differential equations. The resulting differential equations are functions of ail relative coordinates, velocities, and accelerations. Since the coordinates, velocities, and accelerations are tightly coupled by the position, velocity, and acceleration level constraints, direct substitution of the relationships among these variables yields very complicated equations to be implemented. As a consequence, the reduced equations of motion are perturbed with respect to the variations of all coordinates, velocities, and accelerations, which are coupled by the constraints. The position, velocity and acceleration level constraints are also perturbed to obtain the relationships between the variations of all relative coordinates, velocities, and accelerations and variations of the independent ones. The perturbed constraint equations are then simultaneously solved for variations of all coordinates, velocities, and accelerations only in terms of the variations of the independent coordinates, velocities, and accelerations. Finally, the relationships between the variations of all coordinates, velocities, accelerations and these of the independent ones are substituted into the variational equations of motion to obtain the linearized equations of motion only in terms of the independent coordinate, velocity, and acceleration variations.

Mission Planning for Underwater Survey with Autonomous Marine Vehicles

  • Jang, Junwoo;Do, Haggi;Kim, Jinwhan
    • 한국해양공학회지
    • /
    • 제36권1호
    • /
    • pp.41-49
    • /
    • 2022
  • With the advancement of intelligent vehicles and unmanned systems, there is a growing interest in underwater surveys using autonomous marine vehicles (AMVs). This study presents an automated planning strategy for a long-term survey mission using a fleet of AMVs consisting of autonomous surface vehicles and autonomous underwater vehicles. Due to the complex nature of the mission, the actions of the vehicle must be of high-level abstraction, which means that the actions indicate not only motion of the vehicle but also symbols and semantics, such as those corresponding to deploy, charge, and survey. For automated planning, the planning domain definition language (PDDL) was employed to construct a mission planner for realizing a powerful and flexible planning system. Despite being able to handle abstract actions, such high-level planners have difficulty in efficiently optimizing numerical objectives such as obtaining the shortest route given multiple destinations. To alleviate this issue, a widely known technique in operations research was additionally employed, which limited the solution space so that the high-level planner could devise efficient plans. For a comprehensive evaluation of the proposed method, various PDDL-based planners with different parameter settings were implemented, and their performances were compared through simulation. The simulation result shows that the proposed method outperformed the baseline solutions by yielding plans that completed the missions more quickly, thereby demonstrating the efficacy of the proposed methodology.

An Extended Robust $H_{\infty}$ Filter for Nonlinear Constrained Uncertain System

  • Seo, Jae-Won;Yu, Myeong-Jong;Park, Chan-Gook;Lee, Jang-Gyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.565-569
    • /
    • 2003
  • In this paper, a robust filter is proposed to effectively estimate the system states in the case where system model uncertainties as well as disturbances are present. The proposed robust filter is constructed based on the linear approximation methods for a general nonlinear uncertain system with an integral quadratic constraint. We also derive the important characteristic of the proposed filter, a modified $H_{\infty}$ performance index. Analysis results show that the proposed filter has robustness against disturbances, such as process and measurement noises, and against parameter uncertainties. Simulation results show that the proposed filter effectively improves the performance.

  • PDF

순차적 2 차 반응표면법을 이용한 열교환기 최적설계 (Heat Exchanger Optimization using Progressive Quadratic Response Surface Method)

  • 박경우;최동훈;이관수;김양현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1022-1027
    • /
    • 2004
  • In this study, the shape of plate-fin type heat sink is numerically optimized to acquire the minimum pressure drop under the required temperature rise. To do this, a new sequential approximate optimization (SAO) is proposed and it is integrated with the computational fluid dynamics (CFD). In thermal/fluid systems for constrained nonlinear optimization problems, three fundamental difficulties such as high cost for function evaluations (i.e., pressure drop and thermal resistance), the absence of design sensitivity information, and the occurrence of numerical noise are confronted. To overcome these problems, the progressive quadratic response surface method (PQRSM), which is one of the sequential approximate optimization algorithms, is proposed and the heat sink is optimize by means of the PQRSM.

  • PDF