• Title/Summary/Keyword: Constitutive Law

Search Result 226, Processing Time 0.02 seconds

발사체 관통 콘크리트 충격손상 모델 (Impact damage model of projectile penetration into concrete target)

  • 박대효;노명현
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.633-636
    • /
    • 2006
  • Impact damage modeling of concrete under high strain rate loading conditions is investigated. A phenomenological penetration model that can account for complicated impact and penetration process such as the rate and loading history response of concrete, the microstructure-penetration interaction etc. is discussed. Constitutive law compatible with Second Law of thermodynamics and coupled damage and plasticity modelling based on continuum damage mechanics are also examined. The purpose of this paper is preliminarily to study with respect to impact and penetration models for concrete before the development of that model.

  • PDF

이상 유동 이론에서의 평면 변형 벤딩 (Plane-strain bending based on ideal flow theory)

  • ;이원오;정관수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.233-236
    • /
    • 2004
  • The major objective of this paper is to clarify the effect of constitutive laws on bulk forming design based on the ideal flow theory. The latter theory is in general applicable for perfectly/plastic materials. However, its kinematics equations constitute a closed-form system, which are valid for any incompressible materials, therefore enabling us to extend design solutions based on the perfectly/plastic constitutive law to more realistic laws with rate sensitive hardening behavior. In the present paper, several constitutive laws commonly accepted for the modeling of cold and hot metal forming processes are considered and the effect of these laws on one particular plane-strain design is demonstrated. The closed form solution obtained describes a non-trivial nonsteady ideal process. The design solutions based on the ideal flow theory are not unique. To achieve the uniqueness, the criterion that the plastic work required to deform the initial shape of a given class of shapes into a prescribed final shape attains its minimum is adopted. Comparison with a non-ideal process is also made.

  • PDF

Anisotropic-Asymmetric Yield Criterion and Anisotropic Hardening Law for Composite Materials: Theory and Formulations

  • Kim Ji-Hoon;Lee Myoung-Gyu;Chung Kwan-Soo;Youn Jae-Ryoun;Kang Tae-Jin
    • Fibers and Polymers
    • /
    • 제7권1호
    • /
    • pp.42-50
    • /
    • 2006
  • In this paper, elasto-plastic constitutive equations for highly anisotropic and asymmetric materials are developed and their numerical implementation is presented. Some engineering materials such as fiber reinforced composites show different material behavior in the different material directions (anisotropy) as well as in tension and compression (asymmetry). Although these materials have mostly been analyzed using the anisotropic elastic constitutive equations, the necessity of consideration of plastic properties has been frequently reported in the previous works. In order to include both the anisotropic and asymmetric properties of composite materials, the Drucker-Prager yield criterion is modified by adding anisotropic parameters and initial components of translation. The implementation procedure for the developed theory and algorithms is presented based on the implicit finite element scheme. The measured data from the previous work are used to validate the present constitutive equations.

점성토에 있어서의 크리프 거동 예측 (Prediction of Creep Behavior for Cohesive Soils)

  • 김대규
    • 한국지반공학회논문집
    • /
    • 제20권7호
    • /
    • pp.79-89
    • /
    • 2004
  • 본 연구에서는 탄.소.점성 구성모델을 비교적 간단한 수학적 합성유도방식에 기초하여 제안하였다. 이를 위하여 비등방성 modified Cam-Clay model을 일반응력공간으로 확장시켰으며generalized viscous theory를 단순화하여 각각 소성 및 점성의 구성관계로 활용하였다. Damage 원리를 구성모델에 추가하였으며, 모든 식의 변형 및 개발은 모델정수의 수를 감소시키는 원칙에 입각하여 수행하였다. 개발된 구성모델을 활용하여 점성토의 크리프거동을 예측하였으며 이를 실험결과와 비교분석하였다. 예측된 결과는 크리프파괴의 경우를 포함한 실험결과와 비교적 양호하게 일치하는 결과를 보여주었다.

수정멱법칙 비뉴턴유체의 협착관내 유동장해석 (Flow Analysis of the Modified Power-Law Non-Newtonian Fluids in the Stenotic Tubes)

  • 서상호;유상신;장남일
    • 설비공학논문집
    • /
    • 제6권3호
    • /
    • pp.227-236
    • /
    • 1994
  • Steady flows of Newtonian and non-Newtonian fluids in the stenotic tubes with various stenotic shapes are numerically simulated. Validity of the modified power-law model as a constitutive equation for the purely viscous non-Newtonian fluid is discussed and the results of the power-law model are compared with those of the Carreau model, the Powell-Eyring model and experimental data for blood. Flow characteristics and reattachment lengths for non-Newtonian fluids in the stenotic tubes are presented extensively. Also, the analysis is extended to predict the influences of diameter ratio, stenosis spacing, number of stenosis and Reynolds number on the flow characteristics in the multiple stenotic tubes.

  • PDF

The impacts of thermophoresis via Cattaneo-Christov heat flux model

  • Ahmad, Manzoor;Hussain, Muzamal;Khadimallah, Mohamed A.;Ayed, Hamdi;Taj, Muhammad;Alshoaibi, Adil
    • Computers and Concrete
    • /
    • 제29권4호
    • /
    • pp.255-262
    • /
    • 2022
  • The present study investigates the effects of Cattaneo-Christov thermal effects of stagnation point in Walters-B nanofluid flow through lubrication of power-law fluid by taking the slip at the interfacial condition. The impacts of thermophoresis and Brownian motions are further accounted. The fluid impinging orthogonally on the surface is due to power-law slim coating liquid. The generalized newtonian fluid equation is used that obeys the power law constitutive equation to model our problem. The effect of velocity profiles, temperature for different values of n are investigated. The prandtl on the temperature distribution for partial slip and no slip cases is also observed. It is found that for larger values of prandtl number thermal diffusivity of fluid reduces and it enhance the decrease in temperature and boundary layer thickness.

ANALYSIS OF TWOPHASE FLOW MODEL EQUATIONS

  • Jin, Hyeonseong
    • 호남수학학술지
    • /
    • 제36권1호
    • /
    • pp.11-27
    • /
    • 2014
  • In this paper, we propose closures for multi-phase flow models, which satisfy boundary conditions and conservation constraints. The models governing the evolution of the fluid mixing are derived by applying an ensemble averaging procedure to the microphysical equations characterized by distinct phases. We consider compressible multi species multi-phase flow with surface tension and transport.

Parametric study of the convergence of deep tunnels with long term effects: Abacuses

  • Quevedo, Felipe P.M.;Bernaud, Denise
    • Geomechanics and Engineering
    • /
    • 제15권4호
    • /
    • pp.973-986
    • /
    • 2018
  • The objective of this paper is to present abacuses obtained from a parametric study of deep-lined tunnels using a numerical finite element model. This numerical model was implemented in software GEOMEC91, which is a two-dimensional axisymmetric model that considers the progress of excavation and the placing of the lining through the activation and deactivation of elements. It is adopted a step of excavation constant (1/3 of radius), constant velocity and circular cross section along the tunnel axis. It is used for rock mass a viscoplastic constitutive law with von-Mises criterion of viscoplasticity without hardening whose deformation rate over time is given by the Bingham model. The lining uses a linear elastic constitutive law. In total are 1716 analysis presented in 60 abacuses that show the value of ultimate convergence ($U_{eq}$) due to tunneling speed. In addition, it is shown an example of the use of the abacuses to determine the ultimate convergence ($U_{eq}$) of the tunnel and pressure ($P_{eq}$) on the lining.

A Study on the Service Load State Behavior of Reinforced Concrete Plate Member

  • Bhang, Jee-Hwan;Kang, Won-Ho
    • KCI Concrete Journal
    • /
    • 제12권2호
    • /
    • pp.55-72
    • /
    • 2000
  • This paper proposes a mechanical model to describe the load-deformation responses of the reinforced concrete plate members under service load state. An Analytical method is introduced on the basis of the rotating crack model which considers equilibrium, compatibility conditions, load-strain relationship of cracked member, and constitutive law for materials. The tension stiffening effect in reinforced concrete structures is taken into account by the average tensile stress-strain relationship from the load-strain relationship for the cracked member and the constitutive law for material. The strain compatibility is used to find out the crack direction because the crack direction is an unknown variable in the equilibrium and compatibility conditions. The proposed theory is verified by the numerous experimental data such as the crack direction, moment-steel strain relationship, moment-crack width relationship. The present paper can provide some basis for the provision of the definition of serviceability for plate structures of which reinforcements are deviated from the principal stresses, because the present code defines the serviceability by the deflection, crack control, vibration and fatigue basically for the skeletal members. The proposed theory is applicable to predict the service load state behavior of a variety of reinforced concrete plate structures such as skew slab bridges, the deck of skew girder bridges.

  • PDF