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Abstract: In this paper, elasto-plastic constitutive equations for highly anisotropic and asymmetric materials are developed
and their numerical implementation is presented. Some engineering materials such as fiber reinforced composites show dif-
ferent material behavior in the different material directions (anisotropy) as well as in tension and compression (asymmetry).
Although these materials have mostly been analyzed using the anisotropic elastic constitutive equations, the necessity of con-
sideration of plastic properties has been frequently reported in the previous works. In order to include both the anisotropic and
asymmetric properties of composite materials, the Drucker-Prager yield criterion is modified by adding anisotropic parame-
ters and initial components of translation. The implementation procedure for the developed theory and algorithms is pre-
sented based on the implicit finite element scheme. The measured data from the previous work are used to validate the

present constitutive equations.
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Introduction

Many engineering materials have anisotropy which shows
different material behavior with respect to different directions.
Fiber reinforced materials, which show strong anisotropy [1],
also show deviatory mechanical behavior under tensile and
compressive loading conditions. The difference of elastic
properties in tension and compression has generally been
called asymmetry or bi-modular [2-4] property. Fiber reinforced
composite materials have frequently been considered to be
elastically anisotropic and most of mechanical analysis have
been performed using linear elastic constitutive equations.
However, more sophisticated description requires consideration
of some forms of plasticity, viscoelasticity, or both. Recently
experimental studies under static loading revealed that fiber
reinforced composites showed nonlinear behavior for which the
constitutive equations were investigated by elasto-plasticity [5]
and by elastic damage theory [6]. In this paper, the constitutive
equations to describe the material behavior of composite
materials are presented. To include the anisotropy as well as
asymmetric properties of composites materials, the conventional
yield criterion for metallic and/or porous materials is modified
and a numerical algorithm for the finite element method is
presented.

The yielding of porous materials such as concrete and soil
can be effectively described by adding the pressure sensitive
terms to the isotropic yield functions which are generally
used for metallic materials. The Coulomb-Mohr criterion
and Drucker-Prager criterion are the most well known ones
for the purpose. Since the two yield criteria include the
influence of the hydrostatic pressure, the shapes of the yield
surfaces are conical and they show different yield stress in
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tension and compression. Therefore, these yield surfaces can
be used for asymmetric materials with the plane stress
assumption without complicated modifications. However,
the Coulomb-Mohr criterion has corner shape like Tresca
yield surface, which makes difficulty in applying the classical
associated plasticity theory to determine unique plastic strain
increment. On the other hand, Drucker and Prager suggested
smooth circular cone-shaped yield surface by adding hydrostatic
term to the isotropic von Mises yield surface [7]. Therefore,
the Drucker-Prager yield surface has been chosen as the base
yield criterion to be rnodified. )
For the anisotropy of composites materials, Hill modified
and extended the isotropic Mises yield function [8]. He
assumed that material has three mutually orthogonal planes
of symmetry at each material point and the hydrostatic stress
does not affect yielding. Recently Barlat e al. [9,10] proposed
anisotropic yield functions especially for the aluminum alloys.
They used a linear transformation of the Cauchy stress to
consider isotropic function. In order to consider both the
anisotropy and asymmetry, the anisotropic yield function
should be modified. One way to achieve this is to introduce
the pressure dependent terms which make the yield surface
show different initial yield stress in tension and compression.
As for the hardening behavior, previous efforts to implement
plasticity considered mainly three types of hardening assump-
tions. Isotropic hardening assumes that the yield surface can
expand only without translation, while kinematic hardening
translates without size change. The combined isotropic-
kinematic hardening allows both the expansion and translation
of yield surface. Leewood et al. [11] used the isotropic hardening
to describe plastic properties of fibrous metal composites.
Isupov er al. [12] dealt with the micromechanical analysis of
plastic deformation processes of metal matrix composites
composed of elastic reinforcing elements and the plastic
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matrix based on the generalized anisotropic Prager type
kinematic hardening law. Recently, Sarbayev [13] described
the plasticity theory for anisotropic composites utilizing the
kinematic hardening of the anisotropic quadratic yield surface.
Lee et al. [14] discussed the necessity of anisotropic evolution
rule which can explain the directionality of back-stress
evolution. In this paper, a kinematic hardening law is introduced
to describe anisotropic hardening behavior of highly anisotropic
materials such as fiber reinforced composites by modifying
the nonlinear back-stress evolution rule by Chaboche [15].

This paper focuses on the numerical algorithms, especially
on the stress integration procedure for the finite element
method. The developed constitutive equations do not restrict
the choice of hardening laws so that the theory and algorithms
can be applied to the general combined nonlinear isotropic-
kinematic hardening rules.

Constitutive Equations

Anisotropic Elasticity
The stress-strain relationship for the anisotropic materials
is generally derived from the generalized Hooke’s law.

o=C¢’ (1)

where o is the Cauchy stress tensor, C is the stiffness matrix,
and &° is the elastic strain tensor. For 3-dimensional anisotropic
materials, 21 independent material constants are needed to
describe material behavior but only 4 independent material
constants are enough under the assumption of orthotropic and
plane stress condition. The stress-strain relation of an
orthotropic material under the plane stress condition can be
described as following:

Ox Qu Qn 0%
% (T |92 ¢n 0% 2
Oxy 0 0 Ol Gw

The reduced stiffness Q;; above are expressed in terms of
engineering constants,

E
Q11 = l—x
~ Vi Vx
0., = Ve, B, _ VoxE
2 1= v, v, |
E
O = T——
Vo Vix
Q66 = ny (3)

where E,, E, and v,,, v, are Young’s moduli and Poisson’s
ratios for the two material directions shown in Figure 1, G,,
is in-plane shear modulus. Note that the two Poisson’s ratios are
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Figure 1. Material directions for orthotropic materials under plane
stress condition.

not independent and have the following reciprocal relation [16].

(4)
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As explained in the introduction of this paper, fiber
reinforced composite materials have bi-modular property (or
asymmetric property) showing different tensile and compressive
properties. In order to predict the bi-modular property the
elastic constants in equation (2) should be measured both in
the tensile and compressive directions. Here, the superscripts
‘T’ and ‘C’ represent tensile and compressive properties,
respectively. For example, Ei and Ef mean the tensile and
compressive moduli in the x direction illustrated in Figure 1.

Plasticity Theory Based on Metal Plasticity

Although the composite materials have been generally
considered as anisotropic elastic material, recent experiments
confirm that fiber reinforced composites show plastic behavior
in addition to elastic behavior. For a long time, plasticity
theory has been developed to represent the nonlinearity of
stress-strain relationship. For this purpose, the yield surface
has been mathematically imagined to divide the stress space
into the elastic and plastic regions. If a stress state at a point
satisfies the yield criterion, then this point deforms plastically,
otherwise it undergoes elastic deformation. Traditionally, most
of yield surfaces have been developed for metallic materials.
The most well-known yield criteria are von Mises and
Tresca yield criteria. These yield surfaces, however, can only
describe isotropic property which has no directional difference
of initial yielding.

In order to include the yield behavior of anisofropic materials,
many anisotropic yield surfaces have been developed by
modifying the isotropic yield surface such as von Mises and
Tresca yield surfaces. One of the well-known anisotropic yield
surfaces is Hill’s orthotropic yield criterion which modified
von Mises yield surface by introducing additional material
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parameters showing directional differences of initial yield
stresses [8]. Under the plane stress assumption, it has the
form of

® = f(6)-G5., = 6 B6-G, = 0 (5)

byy by 0

where B = by, by, 0]and G, is the equivalent stress

0 0 by

measuring the size of the yield surface as the first order
homogeneous function. The material constants in B matrix
characterize the anisotropic yield behavior and can be
measured by performing uni-axial tension tests in two principal
directions of anisotropy and one pure shear test on the
orthogonal plane of anisotropy.

In addition to yield surface, hardening law is needed to
describe the evolution of yield surface. In general, three
types of hardening assumptions have been suggested for the
most engineering materials including metals and composites:
either yield surface can only expand monotonically and the
amount of hardening depends on the effective plastic strain
(isotropic hardening) or yield surface can only translates in
the stress space and the amount of translation also depends
on the effective plastic strain (kinematic hardening), which
satisfies the general plastic work equivalence principle [17]
for monotonously proportional loading. Another hardening
rule which describes the expansion and translation of the
yield surface has been developed recently (isotropic-kinematic
hardening) to predict both the transient and Bauschinger
effect [7]. In Figure 2, schematic view of the three types of
hardening laws is illustrated.

For the back stress increment of kinematic hardening, the
Chaboche model has been used to consider non-linear behavior
of stress-strain curves. The hardening rule of Chaboche type
back stress evolution rule is,

da = do, -da, (6)
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-
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do, = c- %—O—Qda da, = hdza %)
where ¢ and 4 are material constants to be determined
experimentally [15].

Although above hardening laws can be used with the
anisotropic yield surfaces, the new hardening law incorporating
directional difference is essential to properly describe the
constitutive behavior of highly anisotropic materials. In addition
to the hardening law, the new yield surface should be
considered because plastic behavior also has the asymmetric
property. In the following section, the new yield surface and
hardening rule which can describe both the anisotropy and
asymmetry are explained in detail.

Plasticity for Composite Materials

Since fiber reinforced composites are reinforced by either
short or long fibrous materials, they have two unique properties
compared with metallic materials: highly unequal strength in
different material directions (anisotropy) and unequal strength
in tension and compression (bi-modular or asymmetry). The
conventional anisotropic yield surface can describe the initial
highly anisotropic yield strength but the directional difference
of evolution of yield surface cannot be effectively explained
with the general hardening rules which satisfy the equivalent
plastic work principle. Also, the asymmetric properties cannot
be achieved with the yield surface commonly used in metal
plasticity. Here, in order to consider these two unique charac-
teristics of composite materials, the Drucker-Prager yield
surface was modified by incorporating anisotropic parameters
under the plane stress assumption. As for the hardening rule,
new anisotropic hardening evolution rule with directionality
is developed. In addition to the theoretical development of
constitutive equations, the numerical implementation procedure
is also presented in the section.

Anisotropic-Asymmetric Constitutive Model
Tsai and Wu [18] introduced a failure criterion in a general
quadratic form:
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Figure 2. Schamatic view of three types of hardening laws: (a) isotropic hardening, (b) kinematic hardening, (c) isotropic-kinematic hardening,.



Anisotropic-Asymmetric Constitutive Law

Fio;+ Fyo,0, = 0, Lj=12,..6 ®)
where F; and F; are material parameters. For isotropic
materials, the Drucker-Prager yield function is obtained
from Eq. (8):

Jll/z l_aiso =0 (9)

where Jy = 1/28;8; and J;= oy. Here the second order
tensor S is the deviatoric stress tensor and the above equation
reduces to the Mises yield surface when material constant ¢
is zero. To include the orthotropic properties of composite
materials, the anisotropic material constants are included in
equation (9) after considering the plane stress™ condition.
Then, equation (9) can be modified as,

, 2 2 2 2 2,172
Q' = p(o; - p50,0, + B0, + 3 5550,)
- q(o-x + /BZZ ojv) - 6-[50 =0 (10)

where p, g, [, and f;; are material constants characterizing
the anisotropic and asymmetric behavior. However, one more
material constant is required to represent full orthotropy and
asymmetry because the ratios of initial yield stress in two
directions are same for tensile and compressive loading cases
(incomplete orthotropic Drucker-Prager type). There may be
many different ways to achieve fully orthotropic as well as
asymmetry. Here, the above orthotropic yield criterion is
translated initially to add one more material constant, which
can be explained as having initial back-stress.

®" = pl(0- @) - (o~ a)(o,-a)
2,172

+ B0, - @) +3 B55(0, - )]
~4((0,-a) + P(0,-a,))-T,y, = 0 (11)

where o is the back stress. Because we need only one
additional material constant to represent different initial
yield stresses for tension and compression in each material
direction, the yield surface is translated in one material
direction for simplicity. Here, the yield surface is assumed to
be initially translated in the y direction. That is, o, = e, =0
and a, = a initially. By adding one more parameter the
yield surface can describe complete orthotropic Drucker-
Prager type yield surface.

To determine the five material constants, it is necessary to
measure two uni-axial tensile y1eld stresses o-T 0' two
compressive yield stresses o-C o- and one shear y1e1d stress
o-xy . By the measured initlal y1eld stresses and equation
(11), the following five non-linear systems of equations are
obtained.

PA/(ﬁzzao)z + O}Tﬁzzao + (05)2—‘](0'5—,322%)~ O'xT =0
(12-1)
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2 C 2 C T
PA/(ﬂzzao) _Gxﬂ22a0+(o-f) +q(oy +Bpag)-o, =0

(12-2)
|82 - ap)| (0] —ap) ot = 0 (12-3)
PlBrn(05+ )|+ B 65 + )% = 0 (12-4)
PA/ﬁzzzag+3,3323(0'L)2+q,3220‘0—0{= 0 (12-5)

Note that the reference state of stress is uni-axial tensile
yield stress in the x direction and the above five equations
can be solved by Newton-Raphson method. The two yield
surfaces explained above are schematically drawn in Figure
3 for comparison.

Note: Alternate Approach for the Yield Surface
As mentioned before, the yield surface for anisotropic-
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Figure 3. Schematic view of two types of yield surfaces: (a)
Drucker-Prager type and (b) orthotropic asymmetric type.
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asymmetric materials can have other alternative ways. Here,
for illustrational purpose, the Drucker-Prager type yield
surface is tilted by introducing weighting parameter in the
pressure term. The yield surface can be written as

2 12 2 2 12
b4 =p [O-x + ﬂ22 O—y—ﬂ22 O.xo-y + 3ﬁ3’3 ny]

+q’(O’x+ KO'y)_Eisozo : (13)

where p’, g, fr,/Bs; and x are material constants
characterizing the anisotropic and asymmetric behavior. In
above equation, i« has different value from f,, which makes
the orthogonal yield surface tilted with respect to axis of
yield surface. Then the material constants have the following
relationships with yield stresses:

T
L1, Lo
r=3 1+—C) (14-1)
O-X
i, o
q' =3 1__)&) (14-2)
O-.X
, 1 1Y [1 1
B = —T+_c]/(—r+_é] (14-3)
O, G, O, e}
y y x x
' 2( 1 1 1
LT
¥ Bla) ol of
1 1 1 1
K = (—r‘_c)/(—r‘—cj (14-5)
O'y O'y Gx v

Of the two yield surfaces discussed above, the first one is
chosen to describe the following numerical algorithm and
implementation.

As for the flow rule and loading/unloading conditions, the
associative normality rule has been generally applied in the
plasticity field for in-plane components. The plastic strain
increment is ‘

de? = dy22(9-a) (15)
J(c—-a)
where dy is proportional positive scalar factor. From the
principle of plastic equivalent work with the first order
homogenous nature of equation (11), the increment of
equivalent plastic strain rate becomes

Jo-—a) _
c(o-a)

5= (o-a)-de”_

o(o-a) a7 (16)

where o and d& are the back-stress tensor and effective
plastic strain increment, respectively. Equation (16) is useful
when the effective stress does not have its conjugate strain
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explicitly defined with respect to the plastic strain increment
[19]. The out-of-plane plastic strain increment d&’ is given
from the incompressibility condition, d&f'= ~d&-ds; .

In this paper, the combination of the isotropic hardening
and kinematic hardening models is considered so that the
initial yield stress translates and expands simultaneously
with plastic deformation. The yield surface of equation (11)
is described,

?"(6-0,5,,) = 0 (17)

Note that the back-stress has initial value which is the
center of initial yield surface.

In the usual way of describing isotropic-kinematic hardening
laws, the effective quentities are defined considering the
following modified plastic work equivalence principle. i.e.,

aw,, = (6-a)-de’ = &, ,de (18)

For the back stress increment, the Chaboche model
explained in the previous section is used. However, in order
to account for the directional difference of the back-stress
evolution for the highly anisotropic materials, the anisotropic
back-stress evolution law has been proposed by modifying
the isotropic evolution rule in equation (7). The back stress
evolution rule considered here is:

do, = T,-8=%yz -1, . ndz
Ciso

da, = T, adz (19)

where I'; and I', are reduced matrices containing material
parameters to be experimentally determined for back-stress
evolutions in stead of constants. For the plane stress

“condition of orthotropic materials, the evolution rule

becomes,

da g1 0 0||n

X X

da,|= |0 gy 0}in, dg
daxy 0 0 833 nxy

h, 0 0]l

-0 hy 0]]a 4 (20)

0 0 hyl|la,
where- g; and h; are components of the I’y and I,
respectively and off-diagonal terms in the matrices are
ignored for simplicity. In the material characterization step,
the above constants can be obtained by simple tension tests
in two directions and one shear test. If the material constants
in equation (20) are assumed to be constants the following
relationships are obtained for monotonously proportional
experiments and the material parameters can be obtained
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from the curve fitting of loading curves. Note again that the
initial translation & in the y direction is considered here.

)

gn”;c(l _ e

hll

a | = o+ Sallyq _ % 3}

2

e g -
33 XZ(I_e 33 )

| s

Numerical Implementation of the Constitutive Model

The numerical scheme to solve nonlinear boundary value
problems using a finite element method is to iteratively try
out discrete displacement increment at the discretized material
space and process time until the trial values ultimately
satisfy either the static or dynamic principle of momentum at
every material element. At the first step, the discrete strain
increments are calculated from trial displacement increments
and then at the second step, the stresses and other state
variables such as plastic strains, back stresses are updated
from the discrete strain increments using the elasto-plastic
constitutive equations. Finally, the tolerance is checked whether
the static or dynamic principle of momentum is satisfied.

For a given strain increment Ag, the numerical formulation
provides Ag®, Ae” and Ac, Aa, which are

A& = Ay% (22)
A’ = Ae—Ag” (23)
Ac = C-Ae° = C- (As-Ag)) (24)
A = (rl : %)—Fz-a)AE (25)

Note here that all these increments are functions of
unknown quantity AZ when the hardening curve is provided.
The unknown AZ can be obtained from the following
consistency requirement.

O"(0,— 0y + AG — A, £+ AF) = 0 (26)

where the subscript “0” represents the (initial) values of the
previous step.

Based on the constitutive equations developed here, the
stress update scheme is outlined using the predictor-corrector
method based on the Newton-Raphson method. The updated
stress is initially assumed to be-elastic for a given discrete
strain increment Ag. Therefore,

ol

n+l

= o, +CAe 7)

where the superscript ‘T’ stands for a trial state and the
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subscript denotes the process time step. Also, the trial plastic
quantities are preserved as the previous values,

_T _ T
E,,1 =€, and a,, |, = a, (28)

If the following yield condition is satisfied with the trial
values for a prescribed clastic tolerance Tol° for each active
surface,

" = 5'(0':”“0‘:“)" a-iso(gz;+l)<T016 29

the process at the step n + 1 is considered elastic.

If the above condition on yielding is violated (® > Tol®),
the step is considered elasto-plastic and the trial elastic stress
state is taken as an initial value for the solution of the plastic
corrector problem until the yield condition is satisfied during
the iteration. The predictor-corrector scheme based on the
Newton-Raphson method was used to solve Az .

Then the nonlinear consistency equations are

® = o(c-a)-0,,=0 (30)
where
T Jo
= -C-Ay————— 31
o-n+1 c}’l+1 70,,(0_n+ﬂ_an+ﬂ) ( )
and
5, = an+(l“1-(0—__a”—+ﬂ—)—l“2~an+ﬁ)AE (32)
o

iso

where 0 < £< 1. From the linearized form of equation (30),

o]
oA = - —7 33
(6AY) 41 GDIdhy), (33)
for the m-th iteration and
20 _ o0l b Jju, 20 Gy, G4)
Ay  JodAy JalAy Jo,, JAy
where
90,41 =_C- ___Jdo (35)
ady é,(cn+ﬂ~an+ﬂ)
oo, + (Gn - Q, )
0”271 B rl . +€_iso = _rzan+ﬂ (36)
while
oD oD Jo oD
= — = , d =—1 37
a0-n+1 aan+l ﬁ(cn+1_a’n+l) o aa—im ( )

Note that in deriving equation (36), the higher order terms
caused by the variation of stresses with respect to the
variation of the effective strain increment have been
ignored for simplicity. In order to complete the above
equations, the normal of yield surface is needed and
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summarized in Appendix.

After obtaining consistency parameters from the above
procedures, the stress and other plastic state variables can be
updated.

AV = AZY 4 5(AF) (38-1)
m+1 m —(m+1

ont) = ol +Ac,, (AESLY) (38-2)

art iV = al?) + Aa,,  (AEDSD) (38-3)

In order to implement the constitutive model into implicit
finite element codes, tangent modulus consistent with the
integration algorithm developed above is needed to preserve
the quadratic rate of convergence that characterizes Newton’s
method [19,20]. In order to calculate algorithmic tangent
modulus, the following consistency equation is considered.

(D(Gn+l’an+l) = E(Gnﬂ —an+l)_6-isogn+l =0 (39)
where

G = °-n+C' [8n+1_8n_d—émn+ﬁ] and
Jo

m,, ;= —% (40)
00—y r)

@, = an+F1Md§—r2amdé @1)

Note that the approximation is applied to equation (41) for
simplicity. Differentiating the above two equations,

do,,,=C-[de,, ~d'em,, s+ dE(M,, , QdE]  (42)

where
75
Mn+,B= z
ﬁ(cn+l_an+l)0’,(cn+l_an+l)
C = [C+dEM,, ;1 (43)
and

dan+1 — (rl . (Gn+15-_'an+l)_r2 -

5o

W JPE=QdE (44)

Substituting equations (42) and (44) into the equation (39)
after taking derivative the increment of consistency parameter
becomes

dlg — mn+/3Cd8n+1

mn+ﬂémn+/;’ - gmn+/3 (Mn+/3' Q) + mn+/)’Q + daisa Ide
(45)

Therefore the consistent tangent modulus is calculated by
substituting the equation (45) into equation (42).
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d6n+]

C*"=4d
de

n+1
_leo Cm,, ,®Cm,,;-de(CM, ,)Q®Cm,, ,
m,,,Cm, ,-dem,, ,C(M,, Q)+m,, ;Q+dT,,/dE
(46)

To complete the consistency tangent modulus, the derivative
M,,, 5 should be calculated and the results are expressed in
Appendix.

In this paper, based on the numerical formulations developed
above, the constitutive law for the anisotropic Drucker-
Prager criterion is implemented into the commercial finite
element code ABAQUS using the implicit user subroutine
UMAT [21]. Note that all stresses, strains, and state variables
are defined in the local material axes for anisotropic
materials. These local material axes form a basis system in
which stress and strain components are stored. This represents a
co-rotational coordinate system in which the basis system
rotates with the material. At the beginning of stress update
routine in UMAT, the given stress and strain are automatically
rotated values in the co-rotated coordinate system but the
other state variables such as back stress and plastic strain
should be rotated to account for the evolution of the material
directions. The rotation effect is treated using the rotation
matrix which is decomposed from the deformation gradient
tensor (R=FU™).

Verification

In this part, the developed constitutive equations are
validated using the measured material properties. The initial
yield stress and hardening data for Ti-4Al-0.20, by Lee and
Backofen [22] are utilized and the values are summarized in
Table 1. From the table, the Ti-4Al-0.20, has anisotropic
and asymmetric properties as well. From the tensile and
compressive data the material parameters have been calculated
using equation (12) for yield criterion and equation (21) for
hardening evolution law. Here, since the shear data is not
available, only the results of principal directions are considered.
In Table 2, calculated material parameters are listed. Figure
4 shows the calculated yield criterions which well represent
the anisotropy and asymmetry and their evolution in the
material directions x and y. The different hardening rates in
the x- and y-directions are illustrated in Figure 5. From this

Table 1. Measured yield strength with respect to plastic strain [22]

. o, (MPa) o, (MPa) o, (MPa) o, (MPa)

Plastic . . A Y :
train (tensile, (compressive, (tensile  (compressive,

s x-direction) x-direction) y-direction) y-direction)
0.000 644.7 513.7 689.5 455.1
0.002 658.5 589.5 692.9 530.9
0.010 706.7 751.6 713.6 7274
0.040 772.2 861.9 751.6 879.1
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Table 2. Material parameters for the yield surface and hardening

Parameters Values
P 1.119
P 1.027
B3 1.0
q -1.023
N 34.891 (MPa)
&u 8051.3 (MPa)
2» 27452 (MPa)
833 0
hn 56.54
hy 31.78
1000 4
= 500
=¥
2
5
-500
1000 17 - —
500
o~~~
[
=l
2
b o
-500 -

-500 0 500 1000

o, (MPa)
(b)

Figure 4. Calculated yield surfaces and their evolution in the
material directions: (a) x and (b) y.
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Figure 5. Hardening curves in the x and y directions.

example, the developed constitutive equations would be
adequate for the highly anisotropic and asymmetric materials
with the initial yield criterion as well as subsequent hardening
data.

Summary

In order to represent the material behavior of highly
anisotropic and asymmetric materials, a constitutive model
was developed and its numerical implementation procedures
were presented based on the elasto-plasticity theory. The
Drucker-Prager yield criterion was modified to consider
both the anisotropic and asymmetric properties by adding
anisotropic parameters and initial translation of yield
surface. Also, a kinematic hardening law was introduced to
describe anisotropic hardening behavior by modifying the
Chaboche type back-stress evolution rule. In addition to the
constitutive equation, stress integration algorithm based on
the elasto-plasticity was presented based on the incremental
deformation theory. The implementation procedure for the
developed theory and algorithms was presented for the
implicit finite element method with consistent tangent modulus
and the numerical example was illustrated with measured
material data of reported article.
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Appendix

Yield surface normal mEJo/ds) and its derivative

Ji Hoon Kim et al.

om/do (Eﬁ2 o/dodo) for the modified Drucker-Prager

yield surface are defined as following.

A. do/do
do _ lpzo'x_ﬂzz(o'y— o)
do, 2 A
do _ lp(_ B+ 213222(0} - ) B
do, 2 A 22
2
do _ 3pﬂ330'x2
do,, A
where

2 2 2 7 2
A= Ux‘ﬂzzo'x(o}—ao)'*ﬁzz(o'y—ao) +3B5;0,

B. 5°6/ 80 5o
2
CG = p(Bi(o,- o) + 4B )N
fole
2
28 = 2pB(c+ 455N
do,
8’ ﬂz 2 3
— = 300530 = Brn(0,— )0, Bra(0,— )/ A
O-xy
3G 3 2 2,43
0”0}2-0} = —Zpﬂ22(16’22 O-x(o:v_ aO) + 2ﬁ§3 O-xy)/A
5'c 5’c

do,do, - do,do,

5’ = —EP(ZO' ~ By, - ao))/A3
é’axé’crxy 2 x v
525' - 0’125
doydo,  Jo,do,,
5’ 3 s
-2 -2 - ay))/A
50-})0’70})/ 2p1822 ﬁ§3 o-xy( O-x ﬂZZ(O'y O!O))
3G _ .
do,Jdo, Jo,do,,



