• 제목/요약/키워드: Constant torque

검색결과 416건 처리시간 0.023초

비틀림 댐퍼를 이용한 PTO 전동 라인의 치타음 감소 (Reduction of the Rattle Noise of PTO Driveline using a Tosional Damper)

  • 박영준;김경욱
    • Journal of Biosystems Engineering
    • /
    • 제31권4호
    • /
    • pp.315-322
    • /
    • 2006
  • A torsional damper comprised of two stage pre-dampers was used to reduce the rattle noise generated in the PTO gear box of a direct engine-PTO driveline of agricultural tractors. It was designed and mounted to the engine flywheel to reduce the torque fluctuation-induced speed variations at the driving gears in the PTO gearbox, which were found to be main cause of the rattle noise. The effects of a hysteresis torque and a torsional stiffness of the damper on the speed variation were analyzed using an 11 degree of freedom non-linear model of the damped PTO driveline. The torsional damper was represented by a single degree of freedom model with 7 parameters. Under a constant hysteresis torque, velocity variation was reduced with decrease in the torsional stiffness of the damper. The velocity variation was also decreased with decrease in the hysteresis torque under a constant torsional stiffness. Optimum values of the torsional stiffness and hysteresis torque were obtained by the model simulation for the PTO driveline under the study. When the optimum values of the damper were used, the sound pressure level of the rattle noise was reduced by 81%, resulting in a reduction of 15dB(A). The optimum damper also reduced the engine speed variation, resulting in a reduction of 80% at the driving gears in the PTO gearbox. The torsional damper showed a good performance in reducing the rattle noise caused by the speed variation in the direct engine-PTO driveline.

Static Load Analysis of Twin-screw Kneaders

  • Wei, Jing;Zhang, Guang-Hui;Zhang, Qi;Kim, Jun-Seong;Lyu, Sung-Ki
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권3호
    • /
    • pp.59-63
    • /
    • 2008
  • A static load analysis of twin-screw kneaders is required not only for the dynamic analysis, but also because it is the basis of the stiffness and strength calculations that are essential for the design of bearings. In this paper, the static loads of twin-screw kneaders are analyzed, and a mathematical model of the force and torque moments is presented using a numerical integration method based on differential geometry theory. The calculations of the force and torque moments of the twin-screw kneader are given. The results show that the $M_x$ and $M_y$ components of the fluid resistance torque of the rotors change periodically in each rotation cycle, but the $M_z$ component remains constant. The axis forces $F_z$ in the female and male rotors are also constant. The static load calculated by the proposed method tends to be conservative compared to traditional methods. The proposed method not only meets the static load analysis requirements for twin-screw kneaders, but can also be used as a static load analysis method for screw pumps and screw compressors.

Conceptual design and fabrication test of the HTS magnets for a 500 W-class superconducting DC rotating machine under 77 K

  • Choi, J.;Kim, S.K.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제23권4호
    • /
    • pp.35-38
    • /
    • 2021
  • Conventional direct current (DC) rotating machines are usually used for crane and press machine using high torque in metal and steel industries, because of a constant output power along variable rotating speed. A general DC motor with permanent field magnets could not increase a magnetic flux density at a gap between armature coils and field magnets. However, a superconducting DC motor has field magnets composed with high temperature superconducting (HTS) coils and it could increase the magnetic flux density at the gap to over 10 times than those of a general DC motor by control the excitation current into HTS coils. The superconducting DC motor could be operated with extremely high torque and constant output power at a low rotational speed. In this paper, a 500 W superconducting DC rotating machine was conceptually designed with a LN2 (Liquid Nitrogen) cooling method and the operation characteristics results of HTS field magnets were presented. The two no-insulation HTS magnets for a 500 W superconducting DC rotating machine were fabricated. The excitation current for the HTS magnets could be controlled from 0 to 40 A. This test results will be available to design large-sized HTS magnets for a number of hundred kW class superconducting DC rotating machine under LN2 cooling system.

초고속 소형 BLDC의 순시전압 제어에 의한 토크 리플 억제 (Torque ripple Reduction of High speed Minituale BLDC using instantaneous voltage control)

  • 이동희;김태형;안진우;원태현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.91-94
    • /
    • 2006
  • Miniature BLDC is widely used in industrial applications and especially medical appliances because of there character that high driving efficiency and high torque characteristic. However torque ripple of a high speed miniature BLDC is serous in switching period cue to the very electrical time constant. This paper present instant voltage and current control for torque ripple reduction of a high speed miniature BLDC. Computer simulation and experiment test for 40,000 rpm miniature BLDC show the verification of the proposed control method.

  • PDF

IPMSM 드라이브의 온라인 파라미터 추정을 위한 신경회로망 (Neural Network for on-line Parameter Estimation of IPMSM Drive)

  • 이홍균;이정철;정동화
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권5호
    • /
    • pp.332-337
    • /
    • 2004
  • A number of techniques have been developed for estimation of speed or position in motor drives. The accuracy of these techniques is affected by the variation of motor parameters such as the stator resistance, stator inductance or torque constant. This paper is proposed a neural network based estimator for torque and stator resistance in IPMSM Drives. The neural weights are initially chosen randomly and a model reference algorithm adjusts those weights to give the optimum estimations. The neural network estimator is able to track the varying. parameters quite accurately at different speeds with consistent performance. The neural network parameter estimator has been applied to slot and flux linkage torque ripple minimization of the IPMSM. The validity of the proposed parameter estimator is confirmed by the operating characteristics controlled by neural networks control.

IPM모터의 턴쇼트 고장 대응운전 알고리즘 : 전력 손실 한계 내에서 최대토크 제어 (Interturn Fault Tolerant Driving Algorithm of IPMSMs : Maximum Torque Control within Power Loss Limit)

  • 임성환;구본관
    • 전기학회논문지
    • /
    • 제67권1호
    • /
    • pp.52-60
    • /
    • 2018
  • The winding of the motor stator coil is broken due to external stress and various factors. If the proper current is not injected when interturn fault(ITF) occurs, the fault can easily be expanded and the motor can be finally destroyed, resulting in many problems with time costs and safety. In this paper, the power loss limit concept, which is the inherent durability of each motor, is applied to secure safety by controlling the total power loss of the motor within the limits. So, we propose an algorithm that can control maximum torque per minimum power loss based on constant torque curve and power loss limit. To verify the proposed method, the simulation and experimental results with an Interior permanent magnet synchronous motor(IPMSM) having an ITF are shown.

신경회로망을 이용한 IPMSM 드라이브의 온라인 파라미터 추정 (On-line Parameter Estimation of IPMSM Drive using Neural Network)

  • 최정식;고재섭;정동화
    • 제어로봇시스템학회논문지
    • /
    • 제13권5호
    • /
    • pp.429-433
    • /
    • 2007
  • A number of techniques have been developed for estimation of speed or position in motor drives. The accuracy of these techniques is affected by the variation of motor parameters such as the stator resistance, stator inductance or torque constant. This paper is proposed a neural network based estimator for torque and ststor resistance in IPMSM Drives. The neural weights are initially chosen randomly and a model reference algorithm adjusts those weights to give the optimum estimations. The neural network estimator is able to track the varying parameters quite accurately at different speeds with consistent performance. The neural network parameter estimator has been applied to slot and flux linkage torque ripple minimization of the IPMSM. The validity of the proposed parameter estimator is confirmed by the operating characteristics controlled by neural networks control.

신경회로망을 이용한 IPMSM 드라이브의 온라인 파라미터 추정 (On-line Parameter Estimation of IPMSM Drive using Neural Network)

  • 최정식;고재섭;이정호;김종관;박기태;박병상;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.207-209
    • /
    • 2006
  • A number of techniques have been developed for estimation of speed or position in motor drives. The accuracy of these techniques is affected by the variation of motor parameters such as the stator resistance, stator inductance or torque constant. This paper is proposed a neural network based estimator for torque and ststor resistance in IPMSM Drives. The neural weights are initially chosen randomly and a model reference algorithm adjusts those weights to give the optimum estimations. The neural network estimator is able to track the varying parameters quite accurately at different speeds with consistent performance. The neural network parameter estimator has been applied to slot and flux linkage torque ripple minimization of the IPMSM. The validity of the proposed parameter estimator is confirmed by the operating characteristics controlled by neural networks control.

  • PDF

전자석을 이용한 와전류 제동기의 회전자 발생 토크 특성 (The eddy current braking torque on moving rotor with electromagnet exiting)

  • 김철진;이관용;김용하;한경희;백수현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.46-48
    • /
    • 2002
  • It needs to study on proper brake performance used in servo system of industrial application. In this study, braking torque of eddy current brake between electromagnet stator and rotating disk are analyzed. The torque-speed characteristics and proper disk construction are presented in this paper. From the computer simulation results, it was found that eddy current braking torque is linear or approximately constant over the desired speed range depending on the rotor material, disk construction, pole number and pole displacement of stator.

  • PDF

Spin-Torque Oscillator using a Perpendicular Polarizer with Double Free Layers

  • Seo, Soo-Man;Lee, Kyung-Jin
    • Journal of Magnetics
    • /
    • 제13권4호
    • /
    • pp.153-156
    • /
    • 2008
  • We conducted a micromagnetic modeling study to investigate the spin torque oscillator (STO) using a perpendicular polarizer. We used an additional layer of negative anisotropy constant materials (NAM) on a conventional STO. For the NAM layer, the magnetic easy plane is parallel to the in-plane easy axis of the free layer, and inhibits the development of the out-of-plane component of the magnetization in the free layer. As a result, this new type of STO provides a high frequency limit up to 50 GHz.