• Title/Summary/Keyword: Constant potential

Search Result 987, Processing Time 0.027 seconds

Effect of Graphitized Carbon Supports on Electrochemical Carbon Corrosion in Polymer Electrolyte Membrane Fuel Cells (탄소 담지체의 결정성에 따른 고분자전해질형 연료전지의 내구성 평가 연구)

  • Oh, Hyung-Suk;Sharma, Raj Kishore;Haam, Seung-Joo;Lee, Chang-Ha;Kim, Han-Sung
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.2
    • /
    • pp.142-147
    • /
    • 2009
  • The influence of graphitization of carbon support on the electrochemical corrosion of carbon and sintering of Pt particles are investigated by measuring $CO_2$ emission at a constant potential of 1.4 V for 30 min using on-line mass spectrometry and cyclic voltammogram. In comparison to commercial Pt/C (from Johnson Matthey), highly graphitized carbon nanofiber (CNF) supported Pt catalyst exhibits lower performance degradation and $CO_2$ emission. As the more carbon corrosion occurred, the more prominent changes were detected in electrochemical characteristics of fuel cell. This indicates that the carbon corrosion affects significantly the fuel cell durability. From the observed results, CNF is considered to be more corrosion resistant material as a catalyst support. However, CNF shows higher aggregation of Pt particles under repeated cyclic voltammetry between 0 and 0.8 V where the carbon corrosion is not initiated.

Effect of Acid Treatment of Graphitized Carbon on Carbon Corrosion in Polymer Electrolyte Membrane Fuel Cells (결정성 탄소의 산처리가 고분자연료전지의 성능과 내구성에 미치는 영향 평가)

  • Oh, Hyung-Suk;Han, Hak-Soo;Kim, Han-Sung
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.2
    • /
    • pp.181-188
    • /
    • 2009
  • Pt catalyst was adsorbed on Carbon nanofiber (CNF) by modified polyol method after acid treatment of the carbon support with $HNO_3$ and $H_{2}SO_{4}$. As the time for acid treatment increases, more oxygen functional groups on carbon surface were produced which improve the loading amount and dispersion of Pt catalyst on carbon supports. In order to inspect the effect of CNF acid treatment time on electrochemical corrosion, constant potential of 1.4 V was applied to a single cell for 30 min and the amount of $CO_2$ emitted was monitored with on-line mass spectrometry. According to the results of our experiment, more $CO_2$ was produced with Pt/ oxidized-CNF catalyst in compared to that with unoxidized-CNF. Increasing acid treatment time also induces the more $CO_2$ emission. Besides, performance degradation after corrosion test expanded with severer carbon corrosion. From the observed results, it can be concluded that the acid treatment of CNF is beneficial to catalyst loading, but it also is a significant factor declining the fuel cell durability by accelerating electrochemical oxidation of carbon support.

Initial Risk Assessment of Benzoyl peroxide in Environment (Benzoyl peroxide의 환경에서의 초기 위해성 평가)

  • Kim Mi Kyoung;Bae Heekyung;Kim Su-Hyon;Song Sanghwan;Koo Hyunju;Park Kwangsik;Lee Moon-Soon;Jeon Sung-Hwan;Na Jin-Gyun
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.1
    • /
    • pp.33-40
    • /
    • 2004
  • Benzoyl peroxide is a High Production Volume Chemical, which is produced about 1,371 tons/year in Korea as of 2001 survey. The substance is mainly used as initiators in polymerization, catalysts in the plastics industry, bleaching agents for flour and medication for acne vulgaris. In this study, Quantitative Structure-Activity Relationships (QSAR) are used for getting adequate information on the physical -chemical properties of this chemical. And hydrolysis in water, acute toxicity to aquatic and terrestrial organisms for benzoyl peroxide were studied. The physical -chemical properties of benzoyl peroxide were estimated as followed; vapor pressure=0.00929 Pa, Log $K_{ow}$ = 3.43, Henry's Law constant=3.54${\times}$10$^{-6}$ atm-㎥/mole at $25^{\circ}C$, the half-life of photodegradation=3 days and bioconcentration factor (BCF)=92. Hydrolysis half-life of benzoyl peroxide in water was 5.2 hr at pH 7 at $25^{\circ}C$ and according to the structure of this substance hydrolysis product was expected to benzoic acid. Benzoyl peroxide has toxic effects on the aquatic organisms. 72 hr-Er $C_{50}$ (growth rate) for algae was 0.44 mg/1.,48 hr-E $C_{50}$ for daphnia was 0.07mg/L and the 96hr-L $C_{50}$ of acute toxicity to fish was 0.24mg/L. Acute toxicity to terrestrial organisms (earth worm) of benzoyl peroxide was low (14 day-L $C_{50}$ = > 1,000 mg/kg). Although benzoyl peroxide is high toxic to aquatic organisms, the substance if not bioaccumulated because of the rapid removal by hydrolysis (half-life=5.2 hr at pH 7 at $25^{\circ}C$) and biodegradation (83% by BOD after 21 days). The toxicity observed is assumed to be due to benzoyl peroxide rather than benzoic acid, which shows much lower toxicity to aquatic organisms. One can assume that effects occur before hydrolysis takes place. From the acute toxicity value of algae, daphnia and fish, an assessment factor of 100 was used to determine the predicted no effect concentration (PNEC). The PNEC was calculated to be 0.7$\mu\textrm{g}$/L based on the 48 hr-E $C_{50}$ daphnia (0.07 mg/L). The substance shows high acute toxicity to aquatic organisms and some information indicates wide-dispersive ore of this substance. So this substance is, a candidate for further work, even if it hydrolysis rapidly and has a low bioaccumulation potential. This could lead to local concern for the aquatic environment and therefore environmental exposure assessment is recommended.

A Study on the Adsorption of Organophosphorus Pesticides Applying Sewage Sludge to Soil Amendment (하수슬러지의 토양개량재 적용시 유기인계 농약의 흡착 능력에 관한 연구)

  • 임은진;이재영
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.1
    • /
    • pp.95-103
    • /
    • 2004
  • This study has been assessed the influence of applying sewage sludge to soil amendments on the sorption properties, and leaching potential of three commonly used organophosphorus pesticides, Diazinon, Fenitrothion, and Chlorpyrifos. A sandy soil with a low content of organic carbon was treated with sewage sludge with a ratio sandy soil sludge ratio of 30:1. The sorption was determined with the batch equilibrium technique. The sorption isotherms could be described by Freundlich equation. The Freundlich constant, K value which measures sorption capacity, were 3.97, 9.94, 22.48 for Diazinon, Fenitrothion, Chlorpyrifos in non-amended soil. But in amended soil, K value was 12.58, 28.47, and 61.21 for Diazinon, Fenitrothion, and Chlorpyrifos. The overall effect of sewage sludge addition to soil was to increase pesticides adsorption, due to the high sorption capacity of the organic matter. The effect of sludge on the leaching of pesticides in the soil was studied using packed soil columns. Total recoveries of pesticides in soil and leachate with leaching in soil column, were in the range of about 73∼84%, was reduced with the passage of time. Diazinon moved more rapidly than Chlorpyrifos in the unamended soil due to greater sorption and lower water solubility of Chlorpyrifos. Total amounts of pesticides leached from the sewage sludge amended soils were significantly reduced when compared with unamended soils. This reduction may be mainly due to and increase in sorption in amended soils, as a consequence of the increase in the organic matter content.

Induction of DNA Damage in L5178Y Cells Treated with Gold Nanoparticle

  • Kang, Jin-Seok;Yum, Young-Na;Kim, Joo-Hwan;Song, Hyun-A;Jeong, Jin-Young;Lim, Yong-Taik;Chung, Bong-Hyun;Park, Sue-Nie
    • Biomolecules & Therapeutics
    • /
    • v.17 no.1
    • /
    • pp.92-97
    • /
    • 2009
  • As nanomaterials might enter into cells and have high reactivity with intracellular structures, it is necessary to assay possible genotoxic risk of them. One of these approaches, we investigated possible genotoxic potential of gold nanoparticle (AuNP) using L5178Y cells. Four different sizes of AuNP (4, 15, 100 or 200 nm) were synthesized and the sizes and structures of AuNP were analyzed using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and stability was analyzed by a UV/Vis. Spectrophotometer. Cytotoxicity was assessed by direct cell counting, and cellular location was detected by dark field microscope at 6, 24 and 48 h after treatment of AuNP. Comet assay was conducted to examine DNA damage and tumor necrosis factor (TNF)-${\alpha}$ mRNA level was assay by real-time reverse transcription polymerase chain reaction. Synthetic AuNP (4, 50, 100 and 200 nm size) had constant characteristics and stability confirmed by TEM, SEM and spectrophotometer for 10 days, respectively. Dark field microscope revealed the location of AuNP in the cytoplasm at 6, 24 and 48 h. Treatment of 4 nm AuNP induced dose and time dependent cytotoxicity, while other sizes of AuNP did not. However, Comet assay represented that treatment of 100 nm and 200 nm AuNP significantly increased DNA damage compared to vehicle control (p <0.01). Treatment of 100 nm and 200 nm AuNP significantly increased TNF-${\alpha}$ mRNA expression compared to vehicle control (p<0.05, p<0.01, respectively). Taken together, AuNP induced DNA damage in L5178Y cell, associated with induction of oxidative stress.

Evaluation of the Stress Corrosion Cracking Behavior of Inconel G00 Alloy by Acoustic Emission (음향 방출에 의한 인코넬 600 합금의 응력 부식 균열 거동 평가)

  • Sung, Key-Yong;Kim, In-Sup;Yoon, Young-Ku
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.3
    • /
    • pp.174-183
    • /
    • 1996
  • Acoustic emission(AE) response during stress corrosion cracking(SCC) of Inconel 600 alloy has been monitored to study the AE detectability of crack generation and growth by comparing the crack behavior with AE parameters processed, and to evaluate the applicability as a nondestructive evaluation(AE) by measuring the minimum crack size detectable with AE. Variously heat-treated specimens were tensioned by constant extension rate test(CERT) in various extension rate to give rise to the different SCC behavior of specimens. The AE amplitude level generated from intergranular stress-corrosion cracking(IGSCC) is higher than those from ductile fracture and mechanical deformation, which means the AE amplitude can be a significant parameter for distinguishing the An source. AE can also provide the effective means to identify the transition from the small crack initiation and formation of dominant cracks to the dominant crack growth. Minimum crack size detectable with AE is supposed to be approximately 200 to $400{\mu}m$ in length and below $100{\mu}m$ in depth. The test results show that AE technique has a capability for detecting the early stage of IGSCC growth and the potential for practical application as a NDE.

  • PDF

Three Hypothesis Tests for Determinants of Business Start-up (산업별 창업 결정요인의 세 가지 가설 검증, 2008-2014년)

  • Lee, Changkeun
    • Journal of the Korean Regional Science Association
    • /
    • v.33 no.1
    • /
    • pp.17-27
    • /
    • 2017
  • The purpose of this study is to analyze the determinants of start-ups by industry based on the theoretical background of entrepreneurship. For this purpose, regional industrial structure and local labor market structure are considered in order to focus on regional factors in addition to economic factors, income factors, and technological innovation factors. As an analyzed result, three theories of entrepreneurship generally agree with the determinants of industry - specific entrepreneurship. During the economic recession, the number of start-ups has increased. The intra-regional consumption and the local government expenditure per capita have also positive effects on the start-up. The incubation center has a positive effect on the start - up in the manufacturing sector. Therefore, the academic-industrial leading various incubation facilities should be activated in addition to the central or local government leading incubation centers, which is a part of the policy to support start-ups of central and local governments. In addition, population growth is a very important factor in terms of potential demand creation, and the characteristics of regional industrial structure and the effect of human capital within the region differ by industry. In the case of the manufacturing industry, the accumulation effect positively influences the start-up of the industry. In other service industries, the human capital variable had the greatest effect on the start-up when all other conditions are constant.

Study of Equilibrium, Kinetic and Thermodynamic Parameters about Fluorescein Dye Adsorbed onto Activated Carbon (활성탄을 이용한 플루오레세인 염료 흡착에 대한 평형, 동력학 및 열역학 파라미터의 연구)

  • Lee, Jong-Jib;Um, Myeong Heon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.450-455
    • /
    • 2012
  • The paper includes the utlization of an activated carbon as a potential adsorbent to remove a hazardous fluorescein dye from an aqueous solution. Batch adsorption experiments were carried out for the removal of fluorescein dyes using a granular activated carbon as an adsorbent. The effects of various parameters such as pH, amount of adsorbent, contact time, initial concentration and temperature of the adsoprtion system were investigated. The experimental results revealed that activated carbon exhibit high efficiencies to remove fluorescein dyes from the aqueous solution. The equilibrium process can be well described by Freundlich isotherm in the temperature range from 298 K to 318 K. From adsorption kinetic experiments, the adsorption process followed a pseudo second order kinetic model, and the adsorption rate constant ($k_2$) decreased with increasing the initial concentration of fluorescein. The free energy of adsorption ${\Delta}G^0$), enthalpy ${\Delta}H^0$), and entropy (${\Delta}S^0$) change were calculated to predict the nature adsorption. The estimated values for ${\Delta}G^0$ were -17.11~-20.50 kJ/mol over an activated carbon at 250 mg/L, indicated toward a spontaneous process. The positve value for ${\Delta}H^0$, 33.2 kJ/mol, indicates that the adsorption of fluorescein dyes on an activated carbon is an endothermic process.

Selective Removal of Calcium Ions from a Mixed Solution using Membrane Capacitive Seionization System (막결합 축전식 탈염장치를 이용한 혼합용액에서 칼슘이온의 선택적 제거)

  • Kim, Yu-Jin;Choi, Jae-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.474-479
    • /
    • 2012
  • Possibility of the selective removal of $Ca^{2+}$ ions from a mixed solution of $Na^{+}$ and $Ca^{2+}$ ions using membrane capacitive deionization (MCDI) was investigated. Adsorption equilibrium experiments were conducted to determine the selectivity of the CMX cation-exchange membrane toward $Ca^{2+}$ ions. In addition, desalination experiments for a mixed solution (5 meq/L NaCl + 2 meq/L $CaCl_{2}$) were performed using an MCDI cell. The adsorption equilibrium of CMX membrane showed that the equivalent fraction of $Ca^{2+}$ ions in the solution and the CMX membrane were 28.6 and 87.2%, respectively, which indicates the CMX membrane's high selectivity toward $Ca^{2+}$ ions. Desalination experiments were performed by applying a constant current to the MCDI cell until the cell potential reached 1.0 V. The amount of ions adsorbed did not significantly change as the applied current was changed. However, the equivalent fractions of $Ca^{2+}$ ions among the adsorbed ions were inversely proportional to the applied currents: 81.4, 78.4, 77.0, and 74.5% at 200, 300, 500, and $700\;A/m^{2}$ of applied current density, respectively. This result is attributed to the increased fraction of $Ca^{2+}$ ions adsorbed by the CMX membrane at lower applied current densities.

Improved Physical Properties of Ni-doped $BiFeO_3$ Ceramic

  • Yoo, Y.J.;Park, J.S.;Kang, J.H.;Kim, J.;Lee, B.W.;Kim, K.W.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.250-250
    • /
    • 2012
  • Recently, multiferroic materials have attracted much attention due to their fascinating fundamental physical properties and potential technological applications in magnetic/ferroelectric data storage systems, quantum electromagnets, spintronics, and sensor devices. Among single-phase multiferroic materials, $BiFeO_3$, in particular, has received considerable attention because of its very interesting magnetoelectric properties for application to spintronics. Enhanced ferromagnetism was found by Fe-site ion substitution with magnetic ions. In this study, $BiFe_{1-x}Ni_xO_3$ (x=0 and 0.05) bulk ceramic compounds were prepared by solid-state reaction and rapid sintering. High-purity $Bi_2O_3$, $Fe_3O_4$ and NiO powders were mixed with the stoichiometric proportions, and calcined at $450^{\circ}C$ for 24 h to produce $BiFe_{1-x}Ni_xO_3$. Then, the samples were directly put into the oven, which was heated up to $800^{\circ}C$ and sintered in air for 20 min. The crystalline structure of samples was investigated at room temperature by using a Rigaku Miniflex powder diffractometer. The Raman measurements were carried out with a Raman spectrometer with 514.5-nm-excitation Ar+-laser source under air ambient condition on a focused area of $1-{\mu}m$ diameter. The field-dependent magnetization and the temperature-dependent magnetization measurements were performed with a vibrating-sample magnetometer. The x-ray diffraction study demonstrates the compressive stress due to Ni substitution at the Fe site. $BiFe_{0.95}Ni_{0.05}O_3$ exhibits the rhombohedral perovskite structure R3c, similar to $BiFeO_3$. The lattice constant of $BiFe_{0.95}Ni_{0.05}O_3$ is smaller than of $BiFeO_3$ because of the smaller ionic radius of Ni3+ than that of Fe3+. The field-dependent magnetization of $BiFe_{0.95}Ni_{0.05}O_3$ exhibits a clear hysteresis loop at 300 K. The magnetic properties of $BiFe_{0.95}Ni_{0.05}O_3$ were improved at room temperature because of the existence of structurally compressive stress.

  • PDF