ST-P009 ## Improved Physical Properties of Ni-doped BiFeO₃ Ceramic <u>Y. J. Yoo</u>¹, J. S. Park², J. -H. Kang³, J. Kim⁴, B. W. Lee⁴, K.W. Kim⁵, Y. P. Lee¹* ¹Dept. of Physics, Hanyang University, Seoul 133-791, ²Institute of Basic Sciences and Dept. of Physics, Sungkyunkwan University, Suwon 446-740, ³Dept. of Nano & Electronic Physics, Kookmin University, Seoul 136-702, ⁴Hankuk University of Foreign Studies, Yongin 449-791, ⁵Sunmoon University, Asan, Korea Recently, multiferroic materials have attracted much attention due to their fascinating fundamental physical properties and potential technological applications in magnetic/ferroelectric data storage systems, quantum electromagnets, spintronics, and sensor devices. Among single-phase multiferroic materials, BiFeO₃, in particular, has received considerable attention because of its very interesting magnetoelectric properties for application to spintronics. Enhanced ferromagnetism was found by Fe-site ion substitution with magnetic ions. In this study, BiFe_{1-x}Ni_xO₃ (x=0 and 0.05) bulk ceramic compounds were prepared by solid-state reaction and rapid sintering. High-purity Bi₂O₃, Fe₃O₄ and NiO powders were mixed with the stoichiometric proportions, and calcined at 450°C for 24 h to produce BiFe_{1-x}Ni_xO₃. Then, the samples were directly put into the oven, which was heated up to 800°C and sintered in air for 20 min. The crystalline structure of samples was investigated at room temperature by using a Rigaku Miniflex powder diffractometer. The Raman measurements were carried out with a Raman spectrometer with 514.5-nm-excitation Ar+-laser source under air ambient condition on a focused area of $1-\mu$ m diameter. The field-dependent magnetization and the temperature-dependent magnetization measurements were performed with a vibrating-sample magnetometer. The x-ray diffraction study demonstrates the compressive stress due to Ni substitution at the Fe site. BiFe_{0.95}Ni_{0.05}O₃ exhibits the rhombohedral perovskite structure R3c, similar to BiFeO₃. The lattice constant of BiFe_{0.95}Ni_{0.05}O₃ is smaller than of BiFeO₃ because of the smaller ionic radius of Ni3+ than that of Fe3+. The field-dependent magnetization of BiFe_{0.95}Ni_{0.05}O₃ exhibits a clear hysteresis loop at 300 K. The magnetic properties of BiFe_{0.95}Ni_{0.05}O₃ were improved at room temperature because of the existence of structurally compressive stress. Keywords: Multiferroic, BiFeO₃, Magnetic properties, Ferroelectric properties