• Title/Summary/Keyword: Constant Pressure System

Search Result 570, Processing Time 0.026 seconds

The Study on In-situ Measurement of Hydrogen Permeability through Polymer Electrolyte Membranes for Fuel Cells (연료전지용 고분자전해질막의 실시간 수소 투과도 측정법 연구)

  • Lim, Yoon Jae;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.26 no.2
    • /
    • pp.141-145
    • /
    • 2016
  • Polymer electrolyte membranes (PEMs) are key components to determine electrochemical fuel cell performances, in addition to electrode materials. The PEMs need to satisfy selective transport behaviors to small molecules including gases and protons; the PEMs have to transport protons as fast as possible, while they should act as hydrogen barriers, since the permeated gas induces the thermal degradation of cathode catalyst, resulting in rapid electrochemical reduction. To date, limited tools have been used to measure how fast hydrogen gas permeates through PEMs (e.g., Constant volume/variable Pressure (time-lag) method). However, most of the measurements are conducted under vacuum where PEMs are fully dried. Otherwise, the obtained hydrogen permeance is easily changeable, which causes the measurement errors to be large. In this study, hydrogen permeation properties through Nafion212 used as a standard PEM are evaluated using an in-situ measurement system in which both temperature and humidity are controlled at the same time.

Establishment of Bioassay System for Developing New Insecticides I. Effects of Organic Solvents on the Toxicity against Insects, Phytotoxicity and Solubility of Compounds (살충제 개발을 위한 생물검정법의 확립 I. 각종 유기 용매가 곤충의 독성과 약해 및 화합물의 용해성에 미치는 영향)

  • 안용준;조광연
    • Korean journal of applied entomology
    • /
    • v.31 no.2
    • /
    • pp.182-189
    • /
    • 1992
  • The influnces of 9 kinds of solvents on the toxicities against several insect species, phytotoxicity and solubility of compounds were evaluated by means of leaf dipping and spray methods. In case of the spray application, density and vapor pressure seemed to be a contributing factor to lethal toxicity against brown planthopper and diamond-back moth, respectively; the bigger the property of density and the smaller the vapor pressure gave the stronger toxicity. It appeared that the toxicity of solvents was not correlated with anyone of physical properties such as boiling point, dipole moment, dielectric constant, surface tension and viscosity. Spray treatment gave more toxicity to insects than leaf dipping treatment. Although dielectric constant and dipole moment seemed to be contributing factors to phytotoxic damage to rice seedling and bean plants, respectively, no general correlation between phytoxicity and the other physical properties was found. Leaf dipping application caused stronger phytotoxicity than spray application. It is concluded that 5% acetone solution may be most suitable to test chemicals because of its favorable solubility of compounds, lower toxicity to insects, and lower phytotoxicity.

  • PDF

Temperature Effect on the Swelling Pressure of a Domestic Compacted Bentonite Buffer (국산 압축벤토나이트 완충재의 온도에 따른 팽윤압 특성 연구)

  • Lee, Ji-Hyeon;Lee, Min-Soo;Choi, Heui-Joo;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.3
    • /
    • pp.207-213
    • /
    • 2010
  • The effect of temperature on swelling pressure was observed with a Korean domestic Ca-bentonite which has been considered as a potential buffer material in the engineering barrier of a high level radioactive waste (HLW) disposal system. The Ca-bentonite was compacted to a dry density of 1.6 g/$cm^3$, and then de-ionized water was supplied into it with a constant pressure of 0.69 MPa. The equilibrium swelling pressures were measured with different temperatures of $25^{\circ}C$, $30^{\circ}C$, $40^{\circ}C$, $50^{\circ}C$, $60^{\circ}C$, $70^{\circ}C$, respectively. The Ca-bentonite showed a sufficiently high swelling pressure of 5.3 MPa at room temperatures. Then it was clearly showed that the equilibrium swelling pressure was decreased with an increase of temperature. Interestingly, there were some differences in temperature effect on the equilibrium swelling pressure when the environmental temperature is increasing or decreasing. For further clarifying the swelling behaviour of a Korea domestic Ca-bentonite, the change of a compaction level, and the composition variation of a supplied water would be needed to use in conceptual design of HLW disposal system.

Unsteady Analysis of the Conduction-Dominated Three-Dimensional Close-Contact Melting (열전도가 주도적인 삼차원 접촉융해에 대한 비정상 해석)

  • Yoo, Hoseon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.945-956
    • /
    • 1999
  • This work reports a set of approximate analytical solutions describing the initial transient process of close-contact melting between a rectangular parallelepiped solid and a flat plate on which either constant temperature or constant heat flux is imposed. Not only relative motion of the solid block tangential to the heating plate, but also the density difference between the solid and liquid phase is incorporated in the model. The thin film approximation reduces the force balance between the solid weight and liquid pressure, and the energy balance at the melting front into a simultaneous ordinary differential equation system. The normalized model equations admit compactly expressed analytical solutions which include the already approved two-dimensional solutions as a subset. In particular, the normalized liquid film thickness is independent of all pertinent parameters, thereby facilitating to define the transition period of close-contact melting. A unique behavior of the solid descending velocity due to the density difference is also resolved by the present solution. A new geometric function which alone represents the three-dimensional effect is introduced, and its properties are clarified. One of the representative results is that heat transfer is at least enhanced at the expense of the increase in friction as the cross-sectional shape deviates from the square under the same contact area.

Dynamic Characteristics Analysis for Optimal Design of Flow Divider Valve (Flow Divider Valve의 최적설계를 위한 동특성 해석)

  • Hwang, Tae-Yeong;Park, Tae-Jo
    • 연구논문집
    • /
    • s.29
    • /
    • pp.123-130
    • /
    • 1999
  • Flow divider valve, a kind of hydraulic control valve to divide the flow from one input line to two output line uniformly, should be able to keep the constant flow to output lines despite of the change load or supply pressure. Having 5-10% flow diving error in commercial hydraulic products is one of main source of the accumulated error caused hydraulic system problem and demands the development of flow divider valve to control flow more accurately, In this paper, the dynamic characteristics of flow divider valve are investigated by the numerical estimation of the spool motion considered the external supply force. The optimum design of flow divider valve are proposed to reduce the flow diving error. For the dynamic characteristics analysis, the change of sectional area of fixed and variable orifice, and spool are studied when the input signal is accepted to a constant load.

  • PDF

Piezoelectric properties of Pb-free BNKT ceramics with the amount of $La_2O_3$ addition ($La_2O_3$ 첨가에 따른 무연 BNKT세라믹의 압전 특성)

  • Lee, Hyun-Seok;Lee, Chang-Bae;Yoo, Ju-Hyun;Jeong, Yeong-Ho;Hong, Jael-Il;Chung, Kwang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.145-149
    • /
    • 2004
  • In this study, leed-free piezoelectric ceramics were investigated for pressure sensor applications as a function of the amount of $La_2O_3$ addition at BNKT system. With increasing amount of $La_2O_3$ addition, density and dielectric constant were increased up to 0.9wt% addition and decreased after 0.9wt% addition, electromechanical coupling factor$(k_p)$ and mechanical quality factor$(Q_m)$ showed the maximum values at 0.2wt% addition and decreased after 0.2wt% addition. The $k_p$, density, dielectric constant and $Q_m$ were showed the optimum values of 0.40, $5.71g/cm^3$, 768 and 118 at $La_2O_3$ 0.2wt% addition, respectively.

  • PDF

Using Ambient Control to Prevent External Disturbances in Large-scale Furnace (대형 용해로의 외부 환경변수를 통제하기 위한 주변 환경관리의 활용)

  • Cho, Jin-Hyung;Chang, Sung-Ho;Lee, Sae-Jae;Jang, Do-Soo;Suh, Jung-Yul;Oh, Hyun-Seung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.29 no.2
    • /
    • pp.92-96
    • /
    • 2006
  • Large glass furnaces to produce glass for CRT are housed in huge chambers. It is costly to maintain such a chamber in constant temperature, humidity, and(air) pressure. In this study, first, we show that the process of such a huge furnace, which requires the steady maintenance of high temperature, is badly affected by the ambient temperature of surrounding air. Second, an alternative process which not only maintains the relatively constant temperature dispersion around the furnace, but is also economical will be proposed. We calculate the necessary volume of air inflow in the appendix.

Cavitation optimization of single-orifice plate using CFD method and neighborhood cultivation genetic algorithm

  • Zhang, Yu;Lai, Jiang;He, Chao;Yang, Shihao
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1835-1844
    • /
    • 2022
  • Single-orifice plate is wildly utilized in the piping system of the nuclear power plant to throttle and depressurize the fluid of the pipeline. The cavitation induced by the single-orifice plate may cause some serious vibration of the pipeline. This study aims to find the optimal designs of the single-orifice plates that may have weak cavitation possibilities. For this purpose, a new single-orifice plate with a convergent-flat-divergent hole was modeled, a multi-objective optimization method was proposed to optimize the shape of a single-orifice plate, while computational fluid dynamics method was adopted to obtain the fluid physical quantities. The reciprocal cavitation number and the developmental integral were treated as cavitation indexes (e.g., objectives for the optimization algorithm). Two non-dominant designs ultimately achieved illustrated obvious reduction in the cavitation indexes at a Reynolds number Re = 1 ×105 defined based on fluid velocity. Besides, the sensitivity analysis and temperature effects were also performed. The results indicated that the convergent angle of the single-orifice plate dominants the cavitation behavior globally. The optimal designs of single-orifice plates result in lower downstream jet areas and lower upstream pressure. For a constant Reynolds number, the higher temperature of liquid water, the easier it is to undergo cavitation. Whereas there is a diametric phenomenon for a constant fluid velocity. Moreover, the regression models were carried out to establish the mathematical relation between temperature and cavitation indexes.

Uncertainty quantification of once-through steam generator for nuclear steam supply system using latin hypercube sampling method

  • Lekang Chen ;Chuqi Chen ;Linna Wang ;Wenjie Zeng ;Zhifeng Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2395-2406
    • /
    • 2023
  • To study the influence of parameter uncertainty in small pressurized water reactor (SPWR) once-through steam generator (OTSG), the nonlinear mathematical model of the SPWR is firstly established. Including the reactor core model, the OTSG model and the pressurizer model. Secondly, a control strategy that both the reactor core coolant average temperature and the secondary-side outlet pressure of the OTSG are constant is adopted. Then, the uncertainty quantification method is established based on Latin hypercube sampling and statistical method. On this basis, the quantitative platform for parameter uncertainty of the OTSG is developed. Finally, taking the uncertainty in primary-side flowrate of the OTSG as an example, the platform application work is carried out under the variable load in SPWR and step disturbance of secondary-side flowrate of the OTSG. The results show that the maximum uncertainty in the critical output parameters is acceptable for SPWR.

Effect of Hydrogen Peroxide on UV Treatment of Color in Secondary Effluent for Reclamation (물 재이용을 위한 하수처리장 방류수 색도의 자외선처리에 미치는 과산화수소의 영향)

  • Park, Ki-Young;Maeng, Sung-Kyu;Kim, Ki-Pal;Lee, Seock-Heon;Kweon, Ji-Hyang;Ahn, Kyu-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.3
    • /
    • pp.377-384
    • /
    • 2004
  • In the present study, a feasibility of an advanced oxidation process using UV/Hydrogen peroxide($H_2O_2$) system equipped with a medium pressure lamp for secondary effluent reclamation was investigated. Initial concentration of $H_2O_2$ and pH were changed to determine the optimum operation condition for the system. The removal efficiency of color was than 80% with 14.3mg/L of initial $H_2O_2$ and 5 minute of contact time in the UV/$H_2O_2$ system. The color removal was analyzed using first-order reaction equation. The dependence of rate constant (k) on initial $H_2O_2$ represented the rational relationship with maximum value. Residual $H_2O_2$ caused increase of effluent COD, since analyzing agent, dichromate, reacted with $H_2O_2$ in the sample. Therefore, excess initial concentration of $H_2O_2$ would significantly affect effluent COD measurement. At pH variation experiment, both residual $H_2O_2$ and color showed peak in the neutral pH range with the same pattern. Effect of $H_2O_2$ dose also enhanced color removal but raised residual $H_2O_2$ problem in the continuous operation UV system. In conclusion, these results indicated that medium pressure UV/$H_2O_2$ system could be used to control color in the secondary effluent for reclamation and reuse.