References
- F. Shan, A. Fujishiro, T. Tsuneyoshi, Y. Tsuji, Particle image velocimetry measurements of flow field behind a circular square-edged orifice in a round pipe, Exp. Fluid 54 (2013) 1553. https://doi.org/10.1007/s00348-013-1553-z
- M.R. Harris, Orifice design, in: Orifice Plates and Venture Tube. Experimental Fluid Mechanics, Springer, Cham, 2015.
- B. Ebrahimi, G. He, Y. Tang, M. Franchek, D. Liu, j. Pickett, F. Springett, D. Franklin, Characterization of high pressure cavitating flow through a thick orifice plate in a pipe of constant cross section, Int. J. Therm. Sci. 114 (2017) 229-240. https://doi.org/10.1016/j.ijthermalsci.2017.01.001
- W.Z. Ai, J.H. Wu, Comparison on hydraulic characteristics between orifice plate and plug, J. Shanghai Jiaot. Univ. 19 (4) (2014) 476-480. https://doi.org/10.1007/s12204-014-1527-1
- M. Li, A. Bussonniere, M. Bronson, Z. Xu, Q. Liu, Study of venture tube geometry on the hydrodynamic cavitation for the generation of microbubbles, Miner. Eng. 132 (2019) 268-274. https://doi.org/10.1016/j.mineng.2018.11.001
- G.H. Gan, S.B. Riffat, Pressure loss characteristics of orifice and perforated plates, Exp. Therm. Fluid Sci. 14 (1997) 160-165. https://doi.org/10.1016/S0894-1777(96)00041-6
- S. Malavasi, G. Messa, U. Fratino, A. Pagano, On the pressure losses through perforated plates, Flow Meas. Instrum. 28 (2012) 57-66. https://doi.org/10.1016/j.flowmeasinst.2012.07.006
- S. Shaaban, On the performance of perforated plate with optimized hole geometry, Flow Meas. Instrum. 46 (2015) 44-50. https://doi.org/10.1016/j.flowmeasinst.2015.08.012
- A.A. Araoye, H.M. Badr, W.H. Ahmed, Investigation of fow through multi-stage restricting orifices, Ann. Nucl. Energy 104 (2017) 75-90. https://doi.org/10.1016/j.anucene.2017.02.002
- H. Kim, T. Setoguchi, S. Matsuo, S.R. Raghunathan, Pressure drop control using multiple orifice system in compressible pipe flows, J. Therm. Sci. 10 (4) (2001) 309-317. https://doi.org/10.1007/s11630-001-0037-2
- K. Angele, Prediction of cavitation in orifice plates-A novel and simple rule-of-thumb, Experimental and Computational Multiphase Flow 3 (1) (2021) 68-76. https://doi.org/10.1007/s42757-020-0059-1
- Y. Wang, S. Zhuang, H. Liu, Z. Zhao, M. Dular, J. Wang, Image post-processed approaches for cavitating flow in orifice plate, J. Mech. Sci. Technol. 31 (7) (2017) 3305-3315. https://doi.org/10.1007/s12206-017-0621-3
- M. Liu, L. Tan, S. Cao, Dynamic mode decomposition of cavitating flow around ALE 15 hydrofoil, Renew. Energy 139 (2019) 214-227. https://doi.org/10.1016/j.renene.2019.02.055
- W. Sun, L. Tan, Cavitation-vortex-pressure fluctuation interaction in a centrifugal pump using bubble rotation modified cavitation model under partial load, J. Fluid Eng. 142 (2020), 051206. https://doi.org/10.1115/1.4045615
- M. Liu, L. Tan, S. Cao, Cavitation-vortex-turbulence interaction and one-dimensional model prediction of pressure for hydrofoil ALE 15 by large eddy simulation, J. Fluid Eng. 141 (2019), 021103. https://doi.org/10.1115/1.4040502
- O.A.P. Cappa, T.V.R. Soeira, A.L.A. Simoes, G.B.L. Junior, J.C.S.I. Goncalves, Experimental and computational analyses for induced cavitating flows in orifice plates, Braz. J. Chem. Eng. 37 (2020) 89-99. https://doi.org/10.1007/s43153-019-00007-8
- X. Li, B. Huang, T. Chen, Y. Liu, S. Qiu, J. Zhao, Combined experimental and computational investigation of the caviating flow in an orifice plate with special emphasis on surrogate-based optimization method, J. Mech. Sci. Technol. 31 (1) (2017) 269-279. https://doi.org/10.1007/s12206-016-1229-8
- T. Tang, L. Gao, B. Li, L. Liao, Y. Xi, G. Yang, Cavitation optimization of the throttle orifice plate based on three-dimensional genetic algorithm and topology optimization, Struct. Multidiscip. Optim. 60 (2019) 1227-1244. https://doi.org/10.1007/s00158-019-02249-z
- A. Simpson, V.V. Ranade, Modelling of hydrodynamic cavitation with orifice: influence of different orifice designs, Chem. Eng. Res. Des. 136 (2018) 698-711. https://doi.org/10.1016/j.cherd.2018.06.014
- A. Erdal, H.I. Andersson, Numerical aspects of flow computations through orifices, Flow Meas. Instrum. 8 (1) (1997) 27-37. https://doi.org/10.1016/S0955-5986(97)00017-4
- J.A.B. Filho, A.A.C. Santos, M.A. Navarro, E. Jordao, Effect of chamfer geometry on the pressure drop of perforated plates with thin orifices, Nucl. Eng. Des. 284 (2015) 74-79. https://doi.org/10.1016/j.nucengdes.2014.12.009
- S.S. Manish, J.B. Joshi, A.S. Kalsi, C.S.R. Prasad, D.S. Shukla, Analysis of flow through an orifice meter: CFD simulation, Chem. Eng. Sci. 71 (2012) 300-309. https://doi.org/10.1016/j.ces.2011.11.022
- P. Kumar, M. Wong, M. Bing, A CFD study of wet gas metering using slotted orifice meters, Flow Meas. Instrum. 22 (2011) 33-42. https://doi.org/10.1016/j.flowmeasinst.2010.12.002
- F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J. 32 (8) (1994) 1598-1605. https://doi.org/10.2514/3.12149
- S. Watanabe, T. Hiroyasu, M. Miki, Neighborhood cultivation genetic algorithm for multi-objective optimization problems, in: Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning, SEAL-2002, 2002, pp. 198-202.
- M. Moosa, M.H. Hekmat, Numerical investigation of turbulence characteristics and upstream disturbance of flow through standard and multi-hole orifice flowmeters, Flow Meas. Instrum. 65 (2019) 203-218. https://doi.org/10.1016/j.flowmeasinst.2019.01.002
- B. Ebrahimi, G. He, Y. Tang, M. Franchek, D. Liu, J. Pickett, F. Springett, D. Franklin, Characterization of high-pressure cavitating flow through a thick orifice plate in a pipe of constant cross section, Int. J. Therm. Sci. 114 (2017) 229-240. https://doi.org/10.1016/j.ijthermalsci.2017.01.001