• Title/Summary/Keyword: Consolidation.drainage

Search Result 161, Processing Time 0.021 seconds

Composite Ground Effects on Small Area Replacement Ratio of Sand Piles (면적치환비가 작은 샌드파일 설치지반에서의 복합지반효과)

  • Chun, Byung Sik;Yeoh, Yoo Hyeon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.3
    • /
    • pp.57-69
    • /
    • 2001
  • Sand pile is widely used as a ground improvement method. Although the primary purpose of constructing sand pile is accelerating consolidation, composite ground effect also can be gained by constructing sand pile. This study was accomplished to understand composite ground effect on the ground improved by sand piles which were applied as vertical drainage material when area replacement ratio was small relatively. For determining bearing capacities of origin ground and sand piles and analysing interaction between embankment and origin ground, bearing tests and earth pressure monitoring are performed. From the results, it turned out that the contribution of sand pile as a load bearing mechanism is not substantial. However, the bearing capacity of sand pile was increased to sixty percentages when compared with origin ground. The increasement of bearing capacity could be caused the change of consolidation characteristics during the process of consolidation by overburden load. Therefore, the composite ground effects depending on stiffness increasement of sand pile would be estimated as a factor decreasing consolidation settlement.

  • PDF

A Study of Consolidation Behavior of Clay Ground with Partially Penetrated PVD under Artesian Pressure (연직배수재가 부분 관입된 점토지반의 피압에 따른 압밀 거동에 관한 연구)

  • Yun, Daeho;Nguyen, Ba Phu;Kim, Jaehong;Kim, Yuntae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.1
    • /
    • pp.47-57
    • /
    • 2016
  • Many researchers reported that artesian pressure exists in thick soft ground of Busan Nakdong river estuary. Artesian pressure in soft ground could affect rate of consolidation, settlement and drainage capasity of prefabricated vertical drain(PVD). This paper investigated consolidation behaviors of soft ground with partially penetrated PVD subjected to artesian pressure. Laboratory tests with 1-dimensional large column equipment and their numerical analyses were carried out. Test results showed that the consolidation settlement of clay ground with artesian pressure was higher than that without artesian pressure. Due to artesian pressure, the dissipation rate of excess pore water pressure was reduced in soft ground with artesian pressure, especially at bottom part of clay ground. Numerical results were in good agreement with experimental test results.

Nonlinear Consolidation Analysis Considering Radial Drainage (수평배수를 고려한 비선형 압밀해석)

  • Lee, Song;Chae, Young-Su;Hwang, Koou-Ho;Jeon, Je-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.6
    • /
    • pp.105-115
    • /
    • 2000
  • 본 연구는 현실에 부합하는 연약지반의 압밀거동을 예측하기 위한 연구로서, 일단 3차원 배수 조건하에서 지반의 자중 및 압축성과 투수성의 비선형적 성질이 고려된 비선형 압밀모델을 구성하였다. 또한 연직 배수재의 시공과정에서 발생할수 있는 지반의 교란현상 및 다양한 이질층의 구성, 점증적인 하중재하 조건, 연직배수재의 부분관입 조건에 대한 고려가 가능하도록 비선형 압밀모델을 수정, 보완하였다. 이상의 연구결과를 바탕으로 유한차분방법에 의한 수치해석을 실시하였고 최종적으로 각종 희귀분석과정을 도입한 3차원 비선형 압밀해석 프로그램을 개발하였다. Ska-Edeby의 시험시공 사례를 통한 개발 프로그램의 검증을 실시하였는데, 시험시공 사례의 경우, 현장에서 측정한 깊이별 침하량 및 간극수압 결과를 개발 프로그램에 의한 예측결과와 비교, 분석하였다. 또한 개발 프로그램을 이용하여 다층지반 해석과 관련된 기존 해석방법의 문제점 및 지반의 교란효과와 연직배수재의 부분관입조건, 점증적인 하중재하 조건등이 지반의 압밀거동에 미치는 영향에 대해 살펴보았다.

  • PDF

Quality and Measure Controls for Plastic Board Drains Method (PBD공법의 품질 및 계측관리)

  • 박영목
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10a
    • /
    • pp.133-145
    • /
    • 2001
  • This paper presents quality and measure controls of Plastic Board Drains(PBD) for improvement of soft ground. Laboratory and field tests has been carried out to evaluate the quality of PBD focussing on : discharge capacity of flow area; permeability of filter sleeve; migration of fine particles; deformed shape of PBD; consolidation of clay in the close vicinity of PBD; tensile strength of PBD; long-term consolidation behavior of clay-PBD. Test results show that the quality of PBD is sufficient to perform the improvement of soft silty and clayey ground. But, geotechnical engineer must make efforts minimizings of PBD damage and ground disturbance, continuity of drainage system during construction. Adequate monitoring system should apply at ground focussing on number, location, and accuracy of geotechnical instrumentation, measurement and evaluation of data for ground behaviour.

  • PDF

Utilization of Recycled Aggregates and Crushed Stone as Horizontal Drains in Soft Ground (수평 배수재로서 순환골재와 쇄석의 활용 방안)

  • Lee, Dal-Won;Lim, Jin-Hyuk
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.6
    • /
    • pp.111-123
    • /
    • 2010
  • In this study, laboratory model test on utilization of recycled aggregates and crushed stone as horizontal drains to use alternative material of sand in soft ground is practiced. The coefficient of permeability of the recycled aggregates and crushed stone showed largely 1.2~5.1 times and 2.0~3.3 times greater than sand, respectively. The horizontal coefficient of permeability in case of installing the horizontal perforated drain pipe showed largely 1.9~6.8 times more than the case of not installing. The drainage distance showed 1.7~1.8 times greater than sand. When a degree of consolidation is 90 %, there is no delay of consolidation in SCP and PVD improvement sections. Therefore, it is proven that the field applicability is excellent. Also, the suitable quality management criterion is presented to make use of a horizontal drains in soft ground on the basis of analysis of the physical and environmental characteristics.

An Experimental Study for Substitutability of Sand Mat with Fiber Mat (Fiber Mat의 Sand Mat 대체가능성평가를 위한 실험적 연구)

  • Lee Song;Jeong Yong-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.225-230
    • /
    • 2005
  • At present, there are several problems related with sand mat which is used as a way to accelerate consolidation settlement, to act like an underground drainage layer and to increase trafficability simultaneously. First of all, the unbalance of the demand and supply of sand is one of the biggest problems, which causes not only price rise but also delay of the term of the total construction work. Secondly, the damage of ecosystem and scenery is triggered by thoughtless sand dredging or mining. So, the need that sand mat should be replaced with a new environmentally friendly material has been increased. Fiber mat may be one of the proper materials that suits the need. Therefore, we intended to compare the drainage properties of sand mat with those of fiber mat by experimental model tests. On the basis of the test results, fiber mat took shorter period of consolidation than sand mat and the amount of settlement in the farmer showed a little bit bigger than in the latter. As a conclusion, the substitutability of sand mat with fiber mat could be placed highly in view of drainage efficiency. Furthermore, when fiber mat is used, it has an advantage that spoiled soil of the construction site or nearby site can be used for the purpose of increasing trafficability in addition to a role of drainage layer.

Analysis Method for Non-Linear Finite Strain Consolidation for Soft Dredged Soil Deposit - Part II: Analysis Method and Craney Island Case Study (초연약 준설 매립지반의 비선형 유한변형 압밀해석기법 - Part II: 해석기법과 Craney Island 사례분석)

  • Choi, Hang-Seok;Kwak, Tae-Hoon;Lee, Chul-Ho;Lee, Dong-Seop;Stark, T.D.
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.11
    • /
    • pp.5-15
    • /
    • 2011
  • This paper presents two analysis methods for characterizing the non-linear finite strain consolidation behavior of highly deformable dredged soil deposits along with the fundamental parameters obtained in the companion paper; that is, the zero effective stress void ratio, the non-linear relationships of void ratio-effective stress and void ratio-hydraulic conductivity. The simplified Morris's analytical solution (2002) and the widely recognized numerical program, PSDDF (primary Consolidation, Secondary Compression, and Desiccation of Dredged Fill) for both single and double drainage conditions are adopted in this paper to verify a series of laboratory experiments for self-weight consolidation of the Incheon clay and Kaolinite. The comparisons show that the analysis methods proposed herein can properly simulate the long-term non-linear finite strain consolidation behavior for dredged soils in the field. In addition, a case study for the artificial Craney Island has been conducted to illustrate the importance of obtaining appropriate non-linear finite strain consolidation parameters and the applicability of PSDDF in promoting dredged soil disposal.

A Study on the Outlet Drain Discharge from Paddy Field (논의 배수물꼬의 유량에 관한 기초연구)

  • 최진규;김현영;손재권
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.2
    • /
    • pp.134-142
    • /
    • 1997
  • This study was performed to evaluate the drain runoff characteristics from one paddy field, and to provide the basic data required for the determination of flood discharge and unit drainage water for drainage improvement and farmland consolidation. For this purpose, under the assumption that drain discharge from paddy field was similar to outflow of reservoir, runoff model based on storage equation was applied to the experimental field, and simulated results were compared to the measured discharge at weir point. To estimate effective storage volume of paddy field with water depth, 4 regression formula were examined such as linear, exponential, power, and combined. From the observed runoff characteristics, it was shown to be 3.3~16.3${\ell}$/sec in weir discharge, 57.2~98% in runoff ratio, and relative error of simulated result was 3.0~39.4%, 8.5 ~56.0 % for peak flow and runoff ratio, respectively. Curve number by SCS method was calculated as mean value of 96.4 using measured rainfall and runoff data, it was considered relatively high because paddy field has generally flooding depth contrary to the upland watershed area.

  • PDF

Assessment of Spatial Characteristics of Protected Cultivation Facilities (시설농업의 입지현황 및 특성 분석)

  • 황한철;이남호
    • Journal of Korean Society of Rural Planning
    • /
    • v.4 no.1
    • /
    • pp.86-97
    • /
    • 1998
  • It is neceesary to evaluate the location suitability of protected cultivation facilities to guide reasonable protected cultivation. The evaluation system could help plan new protected cultivation facilities in rural areas. In this study, an assessment was made for the facilities located in three different selected regions: suburban, plain, and mountainous. The assessment was performed based on spatial characteristics of protected cultivation facilities such as land category, size of protected cultivation facilities, land shape, stoniness, land consolidation level, soil drainage, land slope, topography, effective soil depth, zoning or not of agricultural development area, irrigation and drainage condition, distance from roads, and so forth. The results showed that there were significant differences in locational characteristics among the three regions.

  • PDF

A Study on the Bearing Capacity of Gravel Column in Soft Ground (연약지반에서의 쇄석골재 말뚝의 지지력 특성 연구)

  • 천병식;여유현
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.407-414
    • /
    • 1999
  • Sand drain as a vertical drainage is widely used in soft ground improvement. Recently, sand, the principal source of sand drain, is running out. A laboratory model test was carried out to utilize gravel as a substitute for sand. Though which the characteristics of gravel are compared to those of sand for engineering purpose. According to the test, the settlement was found to be smaller in gravel drain than in sand drain. The increase in bearing capacity by gravel rile explains the result. The clogging effect was not found in gravel column. As a result, it is assumed that gravel is relatively acceptable as a drainage material. Gravel material seems better than sand material in bearing capacity and it is found that bearing capacity is larger when gravel is used as compaction pile than as drain from in-situ test on bearing capacity. Increase of bearing capacity with gravel pile means an effect of composite ground by stiffness of gravel material. It can lie supposed to use gravel pile instead of sand pile in view of consolidation effect and bearing capacity.

  • PDF