• 제목/요약/키워드: Connection form

검색결과 682건 처리시간 0.026초

Development of New Detachable Connection for Glass Fiber Reinforced Polymer Considering of Short and Long-Term Behavior

  • Park, Don-U;Hwang, Kyung-Ju;Knippers, Jan
    • 한국공간구조학회논문집
    • /
    • 제7권3호
    • /
    • pp.141-151
    • /
    • 2007
  • The appearance of many Glass Fiber Reinforced Plastic (GFRP) constructions look like ordinary steel construction, because GFRP has been imitated by the same way with the traditional steel's cross section as well as connection system. In terms of detachable connection, there was not enough appropriate option of GFRP connection, such as a traditional bolt connection for steel and wood structures. Most of all, from material characteristic of GFRP related to the deficient ductility, the shearstress principle of GFRP s not proper for the material property, which causes ineffective and not economic application of material. With this research problem, the innovative and detachable onnection system, which is more considered with appropriate material characteristic for FRP, is developed. Not only short time but also long time research with various connection variations is carried out.

  • PDF

하이드로 임베딩시 연결요소의 회전을 통한 체결력 개선 연구 (Improvement of Connection Force in Hydro-Embedding Process Through the Rotational Piercing of the Connection Element)

  • 김봉준;김동규;김동진;문영훈
    • 대한기계학회논문집A
    • /
    • 제30권12호
    • /
    • pp.1503-1508
    • /
    • 2006
  • To increase the applicability and productivity of hydroforming process, hydro-embedding process was developed by combining the hydro-forming process with embedding process simultaneously. It is necessary in the automotive parts to form hollow bodies with connection elements which combine one part with another. The hydro-embedding process is embedding the connection element hydraulically during the operating steps of the hydroforming. In this study, technique of rotational piercing is added on the existing hydro-embedding to increase the connection force of hydro-embedded element. To estimate the feasibility of new trial process, integrated researches on the hydro-embedding process technology have been performed by analyzing the deformed mode of the tubes and the optimal process parameters for various shapes of the connection elements.

Evaluation the behavior of pre-fabricated moment connection with a new geometry of pyramidal end block under monotonic and cyclic loadings

  • Kazemi, Seyed Morteza;Sohrabi, Mohammad Reza;Kazemi, Hasan Haji
    • Steel and Composite Structures
    • /
    • 제29권3호
    • /
    • pp.391-404
    • /
    • 2018
  • Researchers have been long studying new building implementation methods to improve the quality of construction, reduce the time of assembly, and increase productivity. One of these methods is the use of modular pre-fabricated structural forms that are composed of a beam, column, short column, pyramidal end block, and connection plates. In this study, a new geometry for the pyramidal end block was proposed that helps facilitate the assembly procedure. Since the proposed configuration affects the performance of this form of connection, its behavior was evaluated using finite element method. For this purpose, the connection was modeled in ABAQUS and then validated by comparing the outputs with experimental results. The research proceeded through analyzing 16 specimens under monotonic and cyclic loading. The results indicated that using the pyramidal end block not only makes the assembly process easier but also reduces the out-of-plane displacement of the short column webs and the vertical displacement of beam end. By choosing appropriate section properties for column and beam, the connection can bear a rotation up to 0.01 radians within its inelastic region and a total of 0.04 radians without any significant reduction in its bearing capacity.

PC부재의 접합부 거푸집의 개선방안 연구 -공동주택을 중심으로- (Improvement Plan for Connecting Form of PC Member -Focused on Apartment Buildings-)

  • 김선형;최재휘;김선국;이동훈
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2010년도 춘계 학술논문 발표대회 1부
    • /
    • pp.9-12
    • /
    • 2010
  • Conventional apartment building projects have favored wall slab structure for the ease of construction and economic viability. However, wall slab structure, consisting of bearing walls, makes remodeling a difficult challenge. In addition, as the amendment to the Building Act in November, 2005 incentivized easy-to-remodel Rahmen structure design for apartment building in terms of floor area ratio and the number of stories, were are seeing more use of PC construct method in apartment building projects gradually. However, PC construction method requires complex connections between beams and columns, making it difficult to install and remove formwork. Furthermore, it is not possible to reuse forms after removal, generating lots of construction wastes, and it is necessary to install new forms again when the size of connection changes in line with modification of column cross-section. Researchers in Korea and elsewhere in the world have focused on structural performance of connection in PC construction method, with little attention to alternative approaches to improving connection forms for PC construction method. Accordingly, this research aims to study an approach to improving connection forms for PC construction method.

  • PDF

Predicting the stiffness of shear diaphragm panels composed of bridge metal deck forms

  • Egilmez, Oguz O.
    • Steel and Composite Structures
    • /
    • 제24권2호
    • /
    • pp.213-226
    • /
    • 2017
  • The behavior of building industry metal sheeting under shear forces has been extensively studied and equations have been developed to predict its shear stiffness. Building design engineers can make use of these equations to design a metal deck form bracing system. Bridge metal deck forms differ from building industry forms by both shape and connection detail. These two factors have implications for using these equations to predict the shear stiffness of deck form systems used in the bridge industry. The conventional eccentric connection of bridge metal deck forms reduces their shear stiffness dramatically. However, recent studies have shown that a simple modification to the connection detail can significantly increase the shear stiffness of bridge metal deck form panels. To the best of the author's knowledge currently there is not a design aid that can be used by bridge engineers to estimate the stiffness of bridge metal deck forms. Therefore, bridge engineers rely on previous test results to predict the stiffness of bridge metal deck forms in bracing applications. In an effort to provide a design aid for bridge design engineers to rely on bridge metal deck forms as a bracing source during construction, cantilever shear frame test results of bridge metal deck forms with and without edge stiffened panels have been compared with the SDI Diaphragm Design Manual and ECCS Diaphragm Stressed Skin Design Manual stiffness expressions used for building industry deck forms. The bridge metal deck form systems utilized in the tests consisted of sheets with thicknesses of 0.75 mm to 1.90 mm, heights of 50 mm to 75 mm and lengths of up to 2.7 m; which are representative of bridge metal deck forms frequently employed in steel bridge constructions. The results indicate that expressions provided in these manuals to predict the shear stiffness of building metal deck form panels can be used to estimate the shear stiffness of bridge metal deck form bracing systems with certain limitations. The SDI Diaphragm Design Manual expressions result in reasonable estimates for sheet thicknesses of 0.75 mm, 0.91 mm, and 1.21 mm and underestimate the shear stiffness of 1.52 and 1.90 mm thick bridge metal deck forms. Whereas, the ECCS Diaphragm Stressed Skin Design Manual expressions significantly underestimate the shear stiffness of bridge metal deck form systems for above mentioned deck thicknesses.

Slip Form과 Deck Plate를 채용한 벽식 APT의 접합부 Detail개발의 기초적 연구 (The basic study of the detail development of the Wall-type APT joint using Slip Form and Deck plate.)

  • 이희두;박신;임남기
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2003년도 학술.기술논문발표회
    • /
    • pp.127-132
    • /
    • 2003
  • The purpose of current study is about how to construct wall-type APT in slip form and Deck plate applied different connection of materials that wall and slab. A proposal construct's solution is using the continuous a binding string that the main of contents are slab or stairs which horizon structure part construction is joined the vertical structure part, new we Proposed of 2 solution that new technology development. We'll suggest that the development is in the construct of higher stories APT more better other construction method. We expect that the new method is good but we have many things to solute themes. Thus, we decided that this development contents are needed that correct structural investigation and constructor's security of speciality and through a fact construct, correct verification.

  • PDF

WEYL STRUCTURES ON COMPACT CONNECTED LIE GROUPS

  • Park, Joon-Sik;Pyo, Yong-Soo;Shin, Young-Lim
    • 충청수학회지
    • /
    • 제24권3호
    • /
    • pp.503-515
    • /
    • 2011
  • Let G be a compact connected semisimple Lie group, B the Killing form of the algebra g of G, and g the invariant metric induced by B. Then, we obtain a necessary and sufficient condition for a left invariant linear connection D with a Weyl structure ($D,\;g,\;{\omega}$) on (G, g) to be projectively flat (resp. Einstein-Weyl). And, we also get that if a left invariant linear connection D with a Weyl structure ($D,\;g,\;{\omega}$) on (G, g) which has symmetric Ricci tensor $Ric^D$ is projectively flat, then the connection D is Einstein-Weyl; but the converse is not true. Moreover, we show that if a left invariant connection D with Weyl structure ($D,\;g,\;{\omega}$) on (G, g) is projectively flat (resp. Einstein-Weyl), then D is a Yang-Mills connection.

Experimental investigations on resilient beam-column end-plate connection with structural fuse

  • Arunkumar Chandrasekaran;Umamaheswari Nambiappan
    • Steel and Composite Structures
    • /
    • 제47권3호
    • /
    • pp.315-337
    • /
    • 2023
  • The steel structure is an assembly of individual structural members joined together by connections. The connections are the focal point to transfer the forces which is susceptible to damage easily. It is challenging to replace the affected connection parts after an earthquake. Hence, steel plates are utilised as a structural fuse that absorbs connection forces and fails first. The objective of the present research is to develop a beam-column end plate connection with single and dual fuse and study the effect of single fuse, dual fuse and combined action of fuse and damper. In this research, seismic resilient beam-column end plate connection is developed in the form of structural fuse. The novel connection consists of one main fuse was placed horizontally and secondary fuse was placed vertically over main fuse. The specimens are fabricated with the variation in number of fuse (single and dual) and position of fuse (beam flange top and bottom). From the fabricated ten specimens five specimens were loaded monotonically and five cyclically. The experimental results are compared with Finite Element Analysis results of Arunkumar and Umamaheswari (2022). The results are critically assessed in the aspect of moment-rotation behaviour, strain in connection components, connection stiffness, energy dissipation characteristics and ductility. While comparing the performance of total five specimens, the connection with fuse exhibited superior performance than the conventional connection. An equation is proposed for the moment of resistance of end-plate connection without and with structural fuse.

임플란트와 지대주간 내측 연결을 갖는 임플란트 보철의 유한요소 응력분석 (FINITE ELEMENT STRESS ANALYSIS OF IMPLANT PROSTHESIS WITH INTERNAL CONNECTION BETWEEN THE IMPLANT AND THE ABUTMENT)

  • 안종관;계기성;정재헌
    • 대한치과보철학회지
    • /
    • 제42권4호
    • /
    • pp.356-372
    • /
    • 2004
  • Statement of problom: In the internal connection system the loading transfer mechanism within the inner surface of the implant and also the stress distribution occuring to the mandible can be changed according to the abutment form. Therefore it is thought to be imperative to study the difference of the stress distribution occuring at the mandible according to the abutment form. Purpose: The purpose of this study was to assess the loading distributing characteristics of 3 implant systems with internal connection under vertical and inclined loading using finite element analysis. Material and method: Three finite element models were designed according to the type of internal connection of ITI(model 1), Friadent(model 2), and Bicon(model 3) respectively. This study simulated loads of 200N in a vertical direction (A), a $15^{\circ}$ inward inclined direction (B), and a $30^{\circ}$ outward inclined direction (C). Result: The following results have been made based on this numeric simulations. 1. The greatest stress showed in the loading condition C of the inclined load with outside point from the centric cusp tip. 2. Without regard to the loading condition, the magnitudes of the stresses taken at the supporting bone, the implant fixture, and the abutment were greater in the order of model 2, model 1, and model 3. 3. Without regard to the loading condition, greater stress was concentrated at the cortical bone contacting the upper part of the implant fixture, and lower stress was taken at the cancellous bone. 4. The stress of the implant fixture was usually widely distributed along the inner surface of the implant fixture contacting the abutment post. 5. The stress distribution pattern of the abutment showed that the great stress was usually concentrated at the neck of the abutment and the abutment post, and the stress was also distributed toward the lower part of the abutment post in case of the loading condition B, C of the inclined load. 6. In case of the loading condition B, C of the inclined load, the maximum von Misess stress at the whole was taken at the implant fixture both in the model 1 and model 2, and at the abutment in the model 3. 7. The stress was inclined to be distributed from abutment post to fixture in case of the internal connection system. Conclusion: The internal connection system of the implant and the abutment connection methods, the stress-induced pattern at the supporting bone, the implant fixture, and the abutment according to the abutment connection form had differenence among them, and the stress distribution pattern usually had a widely distributed tendency along the inner surface of the implant fixture contacting the a butment post.