• Title/Summary/Keyword: Conidial suspension

Search Result 65, Processing Time 0.026 seconds

Studies on Resistance to anthracnose (Colletrichum dematium) in Pepper (고추의 탄저병(炭疽病) 저항성(抵抗性)에 관(關)한 연구(硏究))

  • Park, Hyoun Kyu;Kim, Byung Soo;Lee, Woo Sung
    • Current Research on Agriculture and Life Sciences
    • /
    • v.4
    • /
    • pp.7-11
    • /
    • 1986
  • Nine Korean local cultivars and 34 PI lines of pepper were tested for resistance to anthracnose (Colletotrichum dematium). Red ripe fruits were harvested, punctured and inoculated by spraying and dropping a conidial suspension of Colletotrichum dematium. Resistance was evaluated by measuring the diameter of ripe rot lesions developed on and around the puncture. The results obtained are as follows : 1. PI 201232, PI 224451, PI 257044, PI 257119, PI 257099, PI 224433, PI 244668, PI 257102, PI 173877, Namji, Cheongryong, and Seodong were the least diseased and considered to be resistant. 2. PI 241670, PI 244670, and PI 224423 were the most diseased and considered to be susceptible. 3. Others were in between the two extremes and considered to be intermediate.

  • PDF

Response of Barley Genotypes to Fusarium Head Blight under Natural Infection and Artificial Inoculation Conditions

  • Khanal, Raja;Choo, Thin Meiw;Xue, Allen G.;Vigier, Bernard;Savard, Marc E.;Blackwell, Barbara;Wang, Junmei;Yang, Jianming;Martin, Richard A.
    • The Plant Pathology Journal
    • /
    • v.37 no.5
    • /
    • pp.455-464
    • /
    • 2021
  • Forty-eight spring barley genotypes were evaluated for deoxynivalenol (DON) concentration under natural infection across 5 years at Harrington, Prince Edward Island. These genotypes were also evaluated for Fusarium head blight (FHB) severity and DON concentration under field nurseries with artificial inoculation of Fusarium graminearum by the grain spawn method across 2 years at Ottawa, Ontario, and one year at Hangzhou, China. Additionally, these genotypes were also evaluated for FHB severity under greenhouse conditions with artificial inoculation of F. graminearum by conidial suspension spray method across 3 years at Ottawa, Ontario. The objective of the study was to investigate if reactions of barley genotypes to artificial FHB inoculation correlate with reactions to natural FHB infection. DON concentration under natural infection was positively correlated with DON concentration (r = 0.47, P < 0.01) and FHB incidence (r = 0.56, P < 0.01) in the artificially inoculated nursery with grain spawn method. Therefore, the grain spawn method can be used to effectively screen for low DON. FHB severity, generated from greenhouse spray, however, was not correlated with DON concentration (r = 0.12, P > 0.05) under natural infection and it was not correlated with DON concentration (r = -0.23, P > 0.05) and FHB incidence (r = 0.19, P > 0.05) in the artificially inoculated nursery with grain spawn method. FHB severity, DON concentration, and yield were affected by year, genotype, and the genotype × year interaction. The effectiveness of greenhouse spray inoculation for indirect selection for low DON concentration requires further studies. Nine of the 48 genotypes were found to contain low DON under natural infection. Island barley had low DON and also had high yield.

First Report of Anthracnose Caused by Colletotrichum sojae on Peanut in Korea (Colletotrichum sojae에 의한 땅콩 탄저병 발생 보고)

  • Shinhwa Kim;Soo Yeon Choi;Hyunjung Chung;Nak Jung Choi;Bo Yoon Seo;Sang-Min Kim
    • The Korean Journal of Mycology
    • /
    • v.52 no.1
    • /
    • pp.55-60
    • /
    • 2024
  • In August 2023, leaf spot disease was observed in peanuts in Cheongju-si, Korea. Leaf spots occurred at the leaf margins and the lesions gradually expanded. Diseased leaf areas were light or dark brown and irregular in shape. A fungal isolate was obtained from symptomatic leaf and cultured on potato dextrose agar (PDA) medium at 25℃. An isolate was identified as Colletotrichum sojae based on morphological characteristics and sequences of the internal transcribed spacers, glyceraldehyde-3-phosphate dehydrogenase, chitin synthase-1, actin, and 𝛽-tubulin genes. Pathogenicity tests were performed on peanut seedlings in a conidial suspension (1×106 conidia/mL). Lesions were observed on the peanut leaf 5 d after inoculation. The pathogen was re-isolated from the lesions of the inoculated leaves. To the best of our knowledge, this is the first report of anthracnose on peanut caused by C. sojae in Korea.

Selection of fungicides to control leaf spot of jujube (Zizyphus jujuba) trees caused by Phoma sp. (Phoma sp.에 의한 대추나무 점무늬병 방제용 살균제 선발)

  • Lee, Bong-Hun;Lim, Tae-Heon;Cha, Byeong-Jin
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.3
    • /
    • pp.40-46
    • /
    • 2000
  • To select the effective fungicides for the control of leaf spot disease of jujube tree (Zizyphus jujuba) caused by Phoma sp., inhibitory effects of 26 fungicides for mycelial growth were investigated at $250{\mu}g\;a.i./m{\ell}$. In the test, eight fungicides were selected and minimum inhibitory concentration (MIC) for mycelial growth and an inhibitory effect for spore germination were investigated. Among the fungicides, myclobutanil, hexaconazole, and triflumizole were excluded in control effect tests because of their relatively high MICs. MICs were ranged $10-50{\mu}g\;a.i./m{\ell}$ for benomyl, carbendazim + kasugamycin (CK), and thiophanate-methyl. triflumizole (TT), and $50-250{\mu}g\;a.i./m{\ell}$ for iprodione + propineb (IT) and iminoctadine-triacelate (IT). However, benomyl and IP showed very low inhibitory effect on conidial germination. When the fungicides were sprayed on the seedlings before the leaves were inoculated with conidial suspension of Phoma sp., the protective values of CK and TT were around 70% at 1,000 ppm and around 90% at 2,000 ppm. The protective values were around 70% at 2,000 ppm (benomyl), 4,000 ppm (IP), and 8,000 ppm (IT). When the fungicides were sprayed after inoculation, benomyl showed the highest curative values of over 90% at 1,000 ppm and the values of CK and TT ranged $70{\sim}80%$ at 1,000 ppm. However, IP and IT had little or no effect on therapy of the disease. IT caused necrotic phytotoxicity on the leaves of jujube seedlings. As results, the best fungicides for the protection of jujube trees from leaf spot disease were CK (2,000 ppm) and TT (2,000 ppm) and for the remedy of the tree, benomyl (1,000 ppm) was the best. Therefore, alternate application of benomyl and CK or TT will be effective in the disease control.

  • PDF

Biological Control of Botrytis Leaf Blight of Lily and Botrytis Gray Mold of Cucumber by Ulocladium atrum (Ulocladium atrum을 이용한 백합 잎마름병 및 오이 잿빛곰팡이병의 생물학적 방제)

  • Lee, Nam-Young;Kwon, Eun-Mi;Kim, Jin-Cheol;Yu, Seung-Hun
    • Research in Plant Disease
    • /
    • v.10 no.4
    • /
    • pp.319-323
    • /
    • 2004
  • This study was conducted to investigate the effect of U. atrum treatment on control of Botrytis leaf blight of lily and Botrytis gray mold of cucumber, and to evaluate the U. atrum as the biological control agent of Botrytis diseases. The antagonistic isolates CNU 9037 and CNU 9054 isolated from tomato leaves were identified as Ulocladium atrum Preuss based on morphological characteristics. This is the first record of U. atrum in Korea. In bioassays on dead leaves of tomato and cucumber, treatment of U. atrum colonized the dead leaves and suppressed sporulation of Botrytis as compared with the untreated control. The suppression of spoulation of Botrytis on dead leaf segments by U. atrum was higher when U. atrum was treated before Botrytis was treated. The effect of treatments with conidial suspension of U. atrum on leaf blight of lily and gray mold of cucumber caused by Botrytis elliptica and B. cinerea, respectively, was investigated under greenhouse conditions. Spraying U. atrum ($1{\times}10^6$ conidia per ml) at intervals of 1 week for three times resulted in a significant reduction of natural infections of lily leaves caused by B. elliptica. Protective value of U. atrum treatment was higher than that of the fungicide (procymidone) treatment. Spraying U. atrum also resulted in a significant reduction of cucumber gray mold caused by B. cinerea. Our results show that U. atrum has a potential for biological control against diseases caused by Botrytis spp, in lily and cucumber.

Stalk Rot Caused by Fusarium thapsinum on Sorghum at Organic Paddy-upland Rotation System in Korea (유기농 답전윤환지 Fusarium thapsinum에 의한 수수 줄기썩음병)

  • Kim, Byung-Ryun;Han, Kwang-Seop;Hahm, Soo-Sang;Kang, Young-Sik;Park, In-Hee;Yoon, Seong Tak
    • Research in Plant Disease
    • /
    • v.22 no.4
    • /
    • pp.293-296
    • /
    • 2016
  • In late June 2016, stalk rot symptoms were observed on five vatieties of sorghum (Sorghum bicolar) at organic paddy-upland rotation system in Anseong city, Korea. The initial symptom on stalk surfaces was red color with a dark red spot lesion. A fungus was isolated from the initial lesion, and cultured on potato dextrose agar. Size of microconidia mostly extend to $5-19{\times}2-{\mu}m$ in culture, with 0-1 septa and macroconidia extend to $29-52{\times}3-4{\mu}m$ with 4-6 septa. Pathogenicity was investigated using conidial suspension spray to seedling of sorghum. After 3 days of inoculation, the dark red lesion was produced on stalks. On the basis of mycological characteristics, pathogenicity, and internal transcribed spacer (ITS) rDNA sequence analysis, this fungus was identified as Fusarium thapsinum. This is the first report of stalk rot on sorghum caused by F. thapsinum in Korea.

Control of Red Pepper Anthracnose Using Bacillus subtilis YGB36, a Plant Growth Promoting Rhizobacterium (식물생장촉진근권세균 Bacillus subtilis YGB36을 이용한 고추 탄저병의 생물학적 방제)

  • Lee, Yong Yoon;Lee, Younmi;Kim, Young Soo;Kim, Hyun Sup;Jeon, Yongho
    • Research in Plant Disease
    • /
    • v.26 no.1
    • /
    • pp.8-18
    • /
    • 2020
  • Red pepper, one of the major economic crops in Korea, is being affected by anthracnose disease caused by Colletotrichum acutatum. To control this disease, an antagonistic bacterial strain, Bacillus subtilis YGB36 identified by 16S rDNA sequencing, physiological and biochemical analyses is used as a biological control agent. In vitro screening revealed that the strain YGB36 possess strong antifungal activity against the pathogen Cylindrocarpon destructans. The strain exhibited cellulase, protease, amylase, siderophore production and phosphate solubility. In vitro conidial germination of C. acutatum was most drastically inhibited by YGB36 cell suspensions (106 cfu/ml) or culture filtrate. Development of anthracnose symptoms was reduced on detached immature green pepper fruits by treatment with cell suspensions, and its control value was recorded as 65.7%. The YGB36 bacterial suspension treatment enhanced the germination rate of red pepper seeds and promoted root development and growth under greenhouse conditions. The in vitro screening of fungicide and insecticide sensitivity test against YGB36 revealed that the bacterial growth was not affected by any of the insecticides, and 11 fungicides out of 21 used. Collectively, our results clearly suggest that the strain YGB36 is considered as one of the potential biocontrol agents against anthracnose disease in red pepper.

Culture Method of Spore for Entomopathogenic Fungus Using Natural Zeolite Ceramic Ball (천연제오라이트 세라믹볼을 이용한 곤충병원성 곰팡이 포자 생산 방법)

  • Lee, Jung-Bok;Kim, Beaum-Soo;Joo, Woo-Hong;Kwon, Gi-Seok
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.1
    • /
    • pp.72-78
    • /
    • 2016
  • BACKGROUND: Entomopathogenic fungi have been studied to develop for biological control agents as an alternative to chemical control agents in insect pest management. This investigated to determine the optimal culture conditions in ceramic balls for maximal sporulation of entomopathogenic fungi Beauveria bassiana M130 by use rice bran extract.METHODS AND RESULTS: METHODS AND RESULTS: A culture of entomopathogenic fungi for 12day on rice bran extract(1:8, w/v) incubated in ceramic matrix at 28℃. Natural zeolite ceramic ball was high production of 4.2×108 conidial/mL. The culture condition optimized initial pH, temperature, rice bran extract concentration, adhesives substance and concentration of NaCl, respectively. The high production of spore optimal conditions were temperature 28℃, initial pH 3, rice bran extract 3 mL, starch 33 g, 5 % NaCl and sopre suspension 7 mL, respectively.CONCLUSION: This study was carried out for the mass production of entomopathogenic fungi conidia recover rate 65% in matrix of natural zeolite ceramic ball, and to develop ingredient-used formulation of Beauveria bassiana M130 conidia for biological control agents.

Biological control of Paraconiothyrium minitans CM2 on Lettuce Sclerotinia Rot Caused by Sclerotinia sclerotiorum (Paraconiothyrium minitans CM2의 상추 균핵병균(Sclerotinia sclerotiorum)에 대한 생물적 방제)

  • Lee, Sang Yeob;Hong, Sung Kee;Kim, Jeong Jun;Han, Ji Hee;Kim, Wan Gyu
    • The Korean Journal of Mycology
    • /
    • v.40 no.4
    • /
    • pp.271-276
    • /
    • 2012
  • A mycoparasite, Paraconiothyrium minitans CM2 was selected for biological control of sclerotinia rot of lettuce caused by Sclerotinia sclerotiorum. The experiment was carried out in a lettuce greenhouse in Yangpyeong from March to April.. When lettuce sclerotinia rot showed in the early stage of occurrence, Conidial suspension of the mycoparasite was weekly treated once to three times onto soil surface around lettuce plants. Incidence of sclerotinia rot in the once-application plot of the mycoparasite ($1{\times}10^7$ spores/$m{\ell}$) and in the benomyl(WP)-treated plot was 11.0% and 2.7%, respectively, whereas that of control was 31.0%. Incidence of twice- and three-application plots of the isolate was 7.9% and 12.8%, respectively. For increasing the effect of the mycoparasite, the experiment for the timing of application of P. minitans CM2 was carried out in a lettuce greenhouse in Yangpyeong and Suwon. Control efficacy against lettuce sclerotinia rot in the soil-drenching plots of P. minitans CM2 ($5{\times}10^6$ spores/$m{\ell}$) in the planting was 75.3~84.7%, and control effect by treatment of the isolate at the pot drenching+the soil-drenching plots in the early stage of disease occurrence was 63.8~58.0%. As the results, P. minitans CM2 could be a prospective biofungicide for biological control of sclerotinia rot of lettuce.

Isolation and Characterization of Colletotrichum Isolates Causing Anthracnose of Japanese Plum Fruit (자두 탄저병균의 분리 및 동정)

  • Lee, Yong-Se;Ha, Da-Hee;Lee, Tae-Yi;Park, Min-Jung;Chung, Jong-Bae;Jeong, Byeong-Ryong
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.4
    • /
    • pp.299-305
    • /
    • 2017
  • BACKGROUND: Although the filamentous fungal pathogen Colletotrichum species causing anthracnose disease on various fruits including peach, apple, persimmon and grape, there is no report on Japanese plum in Korea. METHODS AND RESULTS: In 2016, diseased fruits showing typical anthracnose symptoms of Japanese plum were collected in market and ochards. Diseased tissue was cut off and disinfected subsequently with 70% ethanol for 1 min, and in 1% sodium hypochloride solution for 1 min, followed by three washes with sterile distilled water. The disinfected tissues were placed onto potato dextrose agar (PDA), and incubated at $25^{\circ}C$ in the dark for 5 to 7 days. For single-spore isolation, conidia were scraped off the plate using a loop, and suspended with 10 mL sterile distilled water. One hundred microliter of the conidial suspension was spread on PDA plates and incubated at $25^{\circ}C$. Finally, one germinated conidium was transferred onto PDA plates. Morphological and cultural characteries of colonies and spores of isolated Colletotrichum were observed after 7 to 10 days incubation on PDA. Molecular identification of isolates were analyzed by comparing rDNA-ITS gene sequences with NCBI GeneBank. CONCLUSION: Of eleven isolates of Colletotrichum isolated from anthracnose diseased Japanese plum fruits, six were identified as C. acutatum, and five as C. gloeosporioides based on diagnostic characteristics such as colony growth rate, shape and size of conidia, and rDNA-ITS sequences. This is the first report of Colletotrichum causing the anthracnose on Japanese plum in Korea.